Engine Model Args
Represents a machine learning solution. A model can have multiple versions, each of which is a deployed, trained model ready to receive prediction requests. The model itself is just a container. To get more information about Model, see:
How-to Guides
Example Usage
Ml Model Basic
import * as pulumi from "@pulumi/pulumi";
import * as gcp from "@pulumi/gcp";
const _default = new gcp.ml.EngineModel("default", {
name: "default",
description: "My model",
regions: "us-central1",
});
import pulumi
import pulumi_gcp as gcp
default = gcp.ml.EngineModel("default",
name="default",
description="My model",
regions="us-central1")
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Gcp = Pulumi.Gcp;
return await Deployment.RunAsync(() =>
{
var @default = new Gcp.ML.EngineModel("default", new()
{
Name = "default",
Description = "My model",
Regions = "us-central1",
});
});
package main
import (
"github.com/pulumi/pulumi-gcp/sdk/v7/go/gcp/ml"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := ml.NewEngineModel(ctx, "default", &ml.EngineModelArgs{
Name: pulumi.String("default"),
Description: pulumi.String("My model"),
Regions: pulumi.String("us-central1"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.ml.EngineModel;
import com.pulumi.gcp.ml.EngineModelArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var default_ = new EngineModel("default", EngineModelArgs.builder()
.name("default")
.description("My model")
.regions("us-central1")
.build());
}
}
resources:
default:
type: gcp:ml:EngineModel
properties:
name: default
description: My model
regions: us-central1
Ml Model Full
import * as pulumi from "@pulumi/pulumi";
import * as gcp from "@pulumi/gcp";
const _default = new gcp.ml.EngineModel("default", {
name: "default",
description: "My model",
regions: "us-central1",
labels: {
my_model: "foo",
},
onlinePredictionLogging: true,
onlinePredictionConsoleLogging: true,
});
import pulumi
import pulumi_gcp as gcp
default = gcp.ml.EngineModel("default",
name="default",
description="My model",
regions="us-central1",
labels={
"my_model": "foo",
},
online_prediction_logging=True,
online_prediction_console_logging=True)
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Gcp = Pulumi.Gcp;
return await Deployment.RunAsync(() =>
{
var @default = new Gcp.ML.EngineModel("default", new()
{
Name = "default",
Description = "My model",
Regions = "us-central1",
Labels =
{
{ "my_model", "foo" },
},
OnlinePredictionLogging = true,
OnlinePredictionConsoleLogging = true,
});
});
package main
import (
"github.com/pulumi/pulumi-gcp/sdk/v7/go/gcp/ml"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := ml.NewEngineModel(ctx, "default", &ml.EngineModelArgs{
Name: pulumi.String("default"),
Description: pulumi.String("My model"),
Regions: pulumi.String("us-central1"),
Labels: pulumi.StringMap{
"my_model": pulumi.String("foo"),
},
OnlinePredictionLogging: pulumi.Bool(true),
OnlinePredictionConsoleLogging: pulumi.Bool(true),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.ml.EngineModel;
import com.pulumi.gcp.ml.EngineModelArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var default_ = new EngineModel("default", EngineModelArgs.builder()
.name("default")
.description("My model")
.regions("us-central1")
.labels(Map.of("my_model", "foo"))
.onlinePredictionLogging(true)
.onlinePredictionConsoleLogging(true)
.build());
}
}
resources:
default:
type: gcp:ml:EngineModel
properties:
name: default
description: My model
regions: us-central1
labels:
my_model: foo
onlinePredictionLogging: true
onlinePredictionConsoleLogging: true
Import
Model can be imported using any of these accepted formats:
projects/{{project}}/models/{{name}}
{{project}}/{{name}}
{{name}}
When using thepulumi import
command, Model can be imported using one of the formats above. For example:
$ pulumi import gcp:ml/engineModel:EngineModel default projects/{{project}}/models/{{name}}
$ pulumi import gcp:ml/engineModel:EngineModel default {{project}}/{{name}}
$ pulumi import gcp:ml/engineModel:EngineModel default {{name}}
Constructors
Properties
The default version of the model. This version will be used to handle prediction requests that do not specify a version. Structure is documented below.
The description specified for the model when it was created.
One or more labels that you can add, to organize your models. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field effective_labels
for all of the labels present on the resource.
If true, online prediction nodes send stderr and stdout streams to Stackdriver Logging
If true, online prediction access logs are sent to StackDriver Logging.