Ai Feature Store Entity Type Args
An entity type is a type of object in a system that needs to be modeled and have stored information about. For example, driver is an entity type, and driver0 is an instance of an entity type driver. To get more information about FeaturestoreEntitytype, see:
How-to Guides
Example Usage
Vertex Ai Featurestore Entitytype
import * as pulumi from "@pulumi/pulumi";
import * as gcp from "@pulumi/gcp";
const featurestore = new gcp.vertex.AiFeatureStore("featurestore", {
name: "terraform",
labels: {
foo: "bar",
},
region: "us-central1",
onlineServingConfig: {
fixedNodeCount: 2,
},
encryptionSpec: {
kmsKeyName: "kms-name",
},
});
const entity = new gcp.vertex.AiFeatureStoreEntityType("entity", {
name: "terraform",
labels: {
foo: "bar",
},
description: "test description",
featurestore: featurestore.id,
monitoringConfig: {
snapshotAnalysis: {
disabled: false,
monitoringIntervalDays: 1,
stalenessDays: 21,
},
numericalThresholdConfig: {
value: 0.8,
},
categoricalThresholdConfig: {
value: 10,
},
importFeaturesAnalysis: {
state: "ENABLED",
anomalyDetectionBaseline: "PREVIOUS_IMPORT_FEATURES_STATS",
},
},
});
import pulumi
import pulumi_gcp as gcp
featurestore = gcp.vertex.AiFeatureStore("featurestore",
name="terraform",
labels={
"foo": "bar",
},
region="us-central1",
online_serving_config={
"fixed_node_count": 2,
},
encryption_spec={
"kms_key_name": "kms-name",
})
entity = gcp.vertex.AiFeatureStoreEntityType("entity",
name="terraform",
labels={
"foo": "bar",
},
description="test description",
featurestore=featurestore.id,
monitoring_config={
"snapshot_analysis": {
"disabled": False,
"monitoring_interval_days": 1,
"staleness_days": 21,
},
"numerical_threshold_config": {
"value": 0.8,
},
"categorical_threshold_config": {
"value": 10,
},
"import_features_analysis": {
"state": "ENABLED",
"anomaly_detection_baseline": "PREVIOUS_IMPORT_FEATURES_STATS",
},
})
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Gcp = Pulumi.Gcp;
return await Deployment.RunAsync(() =>
{
var featurestore = new Gcp.Vertex.AiFeatureStore("featurestore", new()
{
Name = "terraform",
Labels =
{
{ "foo", "bar" },
},
Region = "us-central1",
OnlineServingConfig = new Gcp.Vertex.Inputs.AiFeatureStoreOnlineServingConfigArgs
{
FixedNodeCount = 2,
},
EncryptionSpec = new Gcp.Vertex.Inputs.AiFeatureStoreEncryptionSpecArgs
{
KmsKeyName = "kms-name",
},
});
var entity = new Gcp.Vertex.AiFeatureStoreEntityType("entity", new()
{
Name = "terraform",
Labels =
{
{ "foo", "bar" },
},
Description = "test description",
Featurestore = featurestore.Id,
MonitoringConfig = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigArgs
{
SnapshotAnalysis = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs
{
Disabled = false,
MonitoringIntervalDays = 1,
StalenessDays = 21,
},
NumericalThresholdConfig = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs
{
Value = 0.8,
},
CategoricalThresholdConfig = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs
{
Value = 10,
},
ImportFeaturesAnalysis = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysisArgs
{
State = "ENABLED",
AnomalyDetectionBaseline = "PREVIOUS_IMPORT_FEATURES_STATS",
},
},
});
});
package main
import (
"github.com/pulumi/pulumi-gcp/sdk/v7/go/gcp/vertex"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
featurestore, err := vertex.NewAiFeatureStore(ctx, "featurestore", &vertex.AiFeatureStoreArgs{
Name: pulumi.String("terraform"),
Labels: pulumi.StringMap{
"foo": pulumi.String("bar"),
},
Region: pulumi.String("us-central1"),
OnlineServingConfig: &vertex.AiFeatureStoreOnlineServingConfigArgs{
FixedNodeCount: pulumi.Int(2),
},
EncryptionSpec: &vertex.AiFeatureStoreEncryptionSpecArgs{
KmsKeyName: pulumi.String("kms-name"),
},
})
if err != nil {
return err
}
_, err = vertex.NewAiFeatureStoreEntityType(ctx, "entity", &vertex.AiFeatureStoreEntityTypeArgs{
Name: pulumi.String("terraform"),
Labels: pulumi.StringMap{
"foo": pulumi.String("bar"),
},
Description: pulumi.String("test description"),
Featurestore: featurestore.ID(),
MonitoringConfig: &vertex.AiFeatureStoreEntityTypeMonitoringConfigArgs{
SnapshotAnalysis: &vertex.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs{
Disabled: pulumi.Bool(false),
MonitoringIntervalDays: pulumi.Int(1),
StalenessDays: pulumi.Int(21),
},
NumericalThresholdConfig: &vertex.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs{
Value: pulumi.Float64(0.8),
},
CategoricalThresholdConfig: &vertex.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs{
Value: pulumi.Float64(10),
},
ImportFeaturesAnalysis: &vertex.AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysisArgs{
State: pulumi.String("ENABLED"),
AnomalyDetectionBaseline: pulumi.String("PREVIOUS_IMPORT_FEATURES_STATS"),
},
},
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.vertex.AiFeatureStore;
import com.pulumi.gcp.vertex.AiFeatureStoreArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreOnlineServingConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEncryptionSpecArgs;
import com.pulumi.gcp.vertex.AiFeatureStoreEntityType;
import com.pulumi.gcp.vertex.AiFeatureStoreEntityTypeArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysisArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var featurestore = new AiFeatureStore("featurestore", AiFeatureStoreArgs.builder()
.name("terraform")
.labels(Map.of("foo", "bar"))
.region("us-central1")
.onlineServingConfig(AiFeatureStoreOnlineServingConfigArgs.builder()
.fixedNodeCount(2)
.build())
.encryptionSpec(AiFeatureStoreEncryptionSpecArgs.builder()
.kmsKeyName("kms-name")
.build())
.build());
var entity = new AiFeatureStoreEntityType("entity", AiFeatureStoreEntityTypeArgs.builder()
.name("terraform")
.labels(Map.of("foo", "bar"))
.description("test description")
.featurestore(featurestore.id())
.monitoringConfig(AiFeatureStoreEntityTypeMonitoringConfigArgs.builder()
.snapshotAnalysis(AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs.builder()
.disabled(false)
.monitoringIntervalDays(1)
.stalenessDays(21)
.build())
.numericalThresholdConfig(AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs.builder()
.value(0.8)
.build())
.categoricalThresholdConfig(AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs.builder()
.value(10)
.build())
.importFeaturesAnalysis(AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysisArgs.builder()
.state("ENABLED")
.anomalyDetectionBaseline("PREVIOUS_IMPORT_FEATURES_STATS")
.build())
.build())
.build());
}
}
resources:
featurestore:
type: gcp:vertex:AiFeatureStore
properties:
name: terraform
labels:
foo: bar
region: us-central1
onlineServingConfig:
fixedNodeCount: 2
encryptionSpec:
kmsKeyName: kms-name
entity:
type: gcp:vertex:AiFeatureStoreEntityType
properties:
name: terraform
labels:
foo: bar
description: test description
featurestore: ${featurestore.id}
monitoringConfig:
snapshotAnalysis:
disabled: false
monitoringIntervalDays: 1
stalenessDays: 21
numericalThresholdConfig:
value: 0.8
categoricalThresholdConfig:
value: 10
importFeaturesAnalysis:
state: ENABLED
anomalyDetectionBaseline: PREVIOUS_IMPORT_FEATURES_STATS
Vertex Ai Featurestore Entitytype With Beta Fields
import * as pulumi from "@pulumi/pulumi";
import * as gcp from "@pulumi/gcp";
const featurestore = new gcp.vertex.AiFeatureStore("featurestore", {
name: "terraform2",
labels: {
foo: "bar",
},
region: "us-central1",
onlineServingConfig: {
fixedNodeCount: 2,
},
encryptionSpec: {
kmsKeyName: "kms-name",
},
});
const entity = new gcp.vertex.AiFeatureStoreEntityType("entity", {
name: "terraform2",
labels: {
foo: "bar",
},
featurestore: featurestore.id,
monitoringConfig: {
snapshotAnalysis: {
disabled: false,
monitoringInterval: "86400s",
},
categoricalThresholdConfig: {
value: 0.3,
},
numericalThresholdConfig: {
value: 0.3,
},
},
offlineStorageTtlDays: 30,
});
import pulumi
import pulumi_gcp as gcp
featurestore = gcp.vertex.AiFeatureStore("featurestore",
name="terraform2",
labels={
"foo": "bar",
},
region="us-central1",
online_serving_config={
"fixed_node_count": 2,
},
encryption_spec={
"kms_key_name": "kms-name",
})
entity = gcp.vertex.AiFeatureStoreEntityType("entity",
name="terraform2",
labels={
"foo": "bar",
},
featurestore=featurestore.id,
monitoring_config={
"snapshot_analysis": {
"disabled": False,
"monitoring_interval": "86400s",
},
"categorical_threshold_config": {
"value": 0.3,
},
"numerical_threshold_config": {
"value": 0.3,
},
},
offline_storage_ttl_days=30)
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Gcp = Pulumi.Gcp;
return await Deployment.RunAsync(() =>
{
var featurestore = new Gcp.Vertex.AiFeatureStore("featurestore", new()
{
Name = "terraform2",
Labels =
{
{ "foo", "bar" },
},
Region = "us-central1",
OnlineServingConfig = new Gcp.Vertex.Inputs.AiFeatureStoreOnlineServingConfigArgs
{
FixedNodeCount = 2,
},
EncryptionSpec = new Gcp.Vertex.Inputs.AiFeatureStoreEncryptionSpecArgs
{
KmsKeyName = "kms-name",
},
});
var entity = new Gcp.Vertex.AiFeatureStoreEntityType("entity", new()
{
Name = "terraform2",
Labels =
{
{ "foo", "bar" },
},
Featurestore = featurestore.Id,
MonitoringConfig = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigArgs
{
SnapshotAnalysis = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs
{
Disabled = false,
MonitoringInterval = "86400s",
},
CategoricalThresholdConfig = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs
{
Value = 0.3,
},
NumericalThresholdConfig = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs
{
Value = 0.3,
},
},
OfflineStorageTtlDays = 30,
});
});
package main
import (
"github.com/pulumi/pulumi-gcp/sdk/v7/go/gcp/vertex"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
featurestore, err := vertex.NewAiFeatureStore(ctx, "featurestore", &vertex.AiFeatureStoreArgs{
Name: pulumi.String("terraform2"),
Labels: pulumi.StringMap{
"foo": pulumi.String("bar"),
},
Region: pulumi.String("us-central1"),
OnlineServingConfig: &vertex.AiFeatureStoreOnlineServingConfigArgs{
FixedNodeCount: pulumi.Int(2),
},
EncryptionSpec: &vertex.AiFeatureStoreEncryptionSpecArgs{
KmsKeyName: pulumi.String("kms-name"),
},
})
if err != nil {
return err
}
_, err = vertex.NewAiFeatureStoreEntityType(ctx, "entity", &vertex.AiFeatureStoreEntityTypeArgs{
Name: pulumi.String("terraform2"),
Labels: pulumi.StringMap{
"foo": pulumi.String("bar"),
},
Featurestore: featurestore.ID(),
MonitoringConfig: &vertex.AiFeatureStoreEntityTypeMonitoringConfigArgs{
SnapshotAnalysis: &vertex.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs{
Disabled: pulumi.Bool(false),
MonitoringInterval: pulumi.String("86400s"),
},
CategoricalThresholdConfig: &vertex.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs{
Value: pulumi.Float64(0.3),
},
NumericalThresholdConfig: &vertex.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs{
Value: pulumi.Float64(0.3),
},
},
OfflineStorageTtlDays: pulumi.Int(30),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.vertex.AiFeatureStore;
import com.pulumi.gcp.vertex.AiFeatureStoreArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreOnlineServingConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEncryptionSpecArgs;
import com.pulumi.gcp.vertex.AiFeatureStoreEntityType;
import com.pulumi.gcp.vertex.AiFeatureStoreEntityTypeArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var featurestore = new AiFeatureStore("featurestore", AiFeatureStoreArgs.builder()
.name("terraform2")
.labels(Map.of("foo", "bar"))
.region("us-central1")
.onlineServingConfig(AiFeatureStoreOnlineServingConfigArgs.builder()
.fixedNodeCount(2)
.build())
.encryptionSpec(AiFeatureStoreEncryptionSpecArgs.builder()
.kmsKeyName("kms-name")
.build())
.build());
var entity = new AiFeatureStoreEntityType("entity", AiFeatureStoreEntityTypeArgs.builder()
.name("terraform2")
.labels(Map.of("foo", "bar"))
.featurestore(featurestore.id())
.monitoringConfig(AiFeatureStoreEntityTypeMonitoringConfigArgs.builder()
.snapshotAnalysis(AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs.builder()
.disabled(false)
.monitoringInterval("86400s")
.build())
.categoricalThresholdConfig(AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs.builder()
.value(0.3)
.build())
.numericalThresholdConfig(AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs.builder()
.value(0.3)
.build())
.build())
.offlineStorageTtlDays(30)
.build());
}
}
resources:
featurestore:
type: gcp:vertex:AiFeatureStore
properties:
name: terraform2
labels:
foo: bar
region: us-central1
onlineServingConfig:
fixedNodeCount: 2
encryptionSpec:
kmsKeyName: kms-name
entity:
type: gcp:vertex:AiFeatureStoreEntityType
properties:
name: terraform2
labels:
foo: bar
featurestore: ${featurestore.id}
monitoringConfig:
snapshotAnalysis:
disabled: false
monitoringInterval: 86400s
categoricalThresholdConfig:
value: 0.3
numericalThresholdConfig:
value: 0.3
offlineStorageTtlDays: 30
Import
FeaturestoreEntitytype can be imported using any of these accepted formats:
{{featurestore}}/entityTypes/{{name}}
When using thepulumi import
command, FeaturestoreEntitytype can be imported using one of the formats above. For example:
$ pulumi import gcp:vertex/aiFeatureStoreEntityType:AiFeatureStoreEntityType default {{featurestore}}/entityTypes/{{name}}
Properties
Optional. Description of the EntityType.
The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}.
The default monitoring configuration for all Features under this EntityType. If this is populated with FeaturestoreMonitoringConfig.monitoring_interval specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled. Structure is documented below.
Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than offlineStorageTtlDays since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.