AiFeatureStoreEntityTypeFeatureArgs

data class AiFeatureStoreEntityTypeFeatureArgs(val description: Output<String>? = null, val entitytype: Output<String>? = null, val labels: Output<Map<String, String>>? = null, val name: Output<String>? = null, val valueType: Output<String>? = null) : ConvertibleToJava<AiFeatureStoreEntityTypeFeatureArgs>

Feature Metadata information that describes an attribute of an entity type. For example, apple is an entity type, and color is a feature that describes apple. To get more information about FeaturestoreEntitytypeFeature, see:

Example Usage

Vertex Ai Featurestore Entitytype Feature

import * as pulumi from "@pulumi/pulumi";
import * as gcp from "@pulumi/gcp";
const featurestore = new gcp.vertex.AiFeatureStore("featurestore", {
name: "terraform",
labels: {
foo: "bar",
},
region: "us-central1",
onlineServingConfig: {
fixedNodeCount: 2,
},
});
const entity = new gcp.vertex.AiFeatureStoreEntityType("entity", {
name: "terraform",
labels: {
foo: "bar",
},
featurestore: featurestore.id,
});
const feature = new gcp.vertex.AiFeatureStoreEntityTypeFeature("feature", {
name: "terraform",
labels: {
foo: "bar",
},
entitytype: entity.id,
valueType: "INT64_ARRAY",
});
import pulumi
import pulumi_gcp as gcp
featurestore = gcp.vertex.AiFeatureStore("featurestore",
name="terraform",
labels={
"foo": "bar",
},
region="us-central1",
online_serving_config={
"fixed_node_count": 2,
})
entity = gcp.vertex.AiFeatureStoreEntityType("entity",
name="terraform",
labels={
"foo": "bar",
},
featurestore=featurestore.id)
feature = gcp.vertex.AiFeatureStoreEntityTypeFeature("feature",
name="terraform",
labels={
"foo": "bar",
},
entitytype=entity.id,
value_type="INT64_ARRAY")
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Gcp = Pulumi.Gcp;
return await Deployment.RunAsync(() =>
{
var featurestore = new Gcp.Vertex.AiFeatureStore("featurestore", new()
{
Name = "terraform",
Labels =
{
{ "foo", "bar" },
},
Region = "us-central1",
OnlineServingConfig = new Gcp.Vertex.Inputs.AiFeatureStoreOnlineServingConfigArgs
{
FixedNodeCount = 2,
},
});
var entity = new Gcp.Vertex.AiFeatureStoreEntityType("entity", new()
{
Name = "terraform",
Labels =
{
{ "foo", "bar" },
},
Featurestore = featurestore.Id,
});
var feature = new Gcp.Vertex.AiFeatureStoreEntityTypeFeature("feature", new()
{
Name = "terraform",
Labels =
{
{ "foo", "bar" },
},
Entitytype = entity.Id,
ValueType = "INT64_ARRAY",
});
});
package main
import (
"github.com/pulumi/pulumi-gcp/sdk/v7/go/gcp/vertex"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
featurestore, err := vertex.NewAiFeatureStore(ctx, "featurestore", &vertex.AiFeatureStoreArgs{
Name: pulumi.String("terraform"),
Labels: pulumi.StringMap{
"foo": pulumi.String("bar"),
},
Region: pulumi.String("us-central1"),
OnlineServingConfig: &vertex.AiFeatureStoreOnlineServingConfigArgs{
FixedNodeCount: pulumi.Int(2),
},
})
if err != nil {
return err
}
entity, err := vertex.NewAiFeatureStoreEntityType(ctx, "entity", &vertex.AiFeatureStoreEntityTypeArgs{
Name: pulumi.String("terraform"),
Labels: pulumi.StringMap{
"foo": pulumi.String("bar"),
},
Featurestore: featurestore.ID(),
})
if err != nil {
return err
}
_, err = vertex.NewAiFeatureStoreEntityTypeFeature(ctx, "feature", &vertex.AiFeatureStoreEntityTypeFeatureArgs{
Name: pulumi.String("terraform"),
Labels: pulumi.StringMap{
"foo": pulumi.String("bar"),
},
Entitytype: entity.ID(),
ValueType: pulumi.String("INT64_ARRAY"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.vertex.AiFeatureStore;
import com.pulumi.gcp.vertex.AiFeatureStoreArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreOnlineServingConfigArgs;
import com.pulumi.gcp.vertex.AiFeatureStoreEntityType;
import com.pulumi.gcp.vertex.AiFeatureStoreEntityTypeArgs;
import com.pulumi.gcp.vertex.AiFeatureStoreEntityTypeFeature;
import com.pulumi.gcp.vertex.AiFeatureStoreEntityTypeFeatureArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var featurestore = new AiFeatureStore("featurestore", AiFeatureStoreArgs.builder()
.name("terraform")
.labels(Map.of("foo", "bar"))
.region("us-central1")
.onlineServingConfig(AiFeatureStoreOnlineServingConfigArgs.builder()
.fixedNodeCount(2)
.build())
.build());
var entity = new AiFeatureStoreEntityType("entity", AiFeatureStoreEntityTypeArgs.builder()
.name("terraform")
.labels(Map.of("foo", "bar"))
.featurestore(featurestore.id())
.build());
var feature = new AiFeatureStoreEntityTypeFeature("feature", AiFeatureStoreEntityTypeFeatureArgs.builder()
.name("terraform")
.labels(Map.of("foo", "bar"))
.entitytype(entity.id())
.valueType("INT64_ARRAY")
.build());
}
}
resources:
featurestore:
type: gcp:vertex:AiFeatureStore
properties:
name: terraform
labels:
foo: bar
region: us-central1
onlineServingConfig:
fixedNodeCount: 2
entity:
type: gcp:vertex:AiFeatureStoreEntityType
properties:
name: terraform
labels:
foo: bar
featurestore: ${featurestore.id}
feature:
type: gcp:vertex:AiFeatureStoreEntityTypeFeature
properties:
name: terraform
labels:
foo: bar
entitytype: ${entity.id}
valueType: INT64_ARRAY

Vertex Ai Featurestore Entitytype Feature With Beta Fields

import * as pulumi from "@pulumi/pulumi";
import * as gcp from "@pulumi/gcp";
const featurestore = new gcp.vertex.AiFeatureStore("featurestore", {
name: "terraform2",
labels: {
foo: "bar",
},
region: "us-central1",
onlineServingConfig: {
fixedNodeCount: 2,
},
});
const entity = new gcp.vertex.AiFeatureStoreEntityType("entity", {
name: "terraform2",
labels: {
foo: "bar",
},
featurestore: featurestore.id,
monitoringConfig: {
snapshotAnalysis: {
disabled: false,
monitoringInterval: "86400s",
},
categoricalThresholdConfig: {
value: 0.3,
},
numericalThresholdConfig: {
value: 0.3,
},
},
});
const feature = new gcp.vertex.AiFeatureStoreEntityTypeFeature("feature", {
name: "terraform2",
labels: {
foo: "bar",
},
entitytype: entity.id,
valueType: "INT64_ARRAY",
});
import pulumi
import pulumi_gcp as gcp
featurestore = gcp.vertex.AiFeatureStore("featurestore",
name="terraform2",
labels={
"foo": "bar",
},
region="us-central1",
online_serving_config={
"fixed_node_count": 2,
})
entity = gcp.vertex.AiFeatureStoreEntityType("entity",
name="terraform2",
labels={
"foo": "bar",
},
featurestore=featurestore.id,
monitoring_config={
"snapshot_analysis": {
"disabled": False,
"monitoring_interval": "86400s",
},
"categorical_threshold_config": {
"value": 0.3,
},
"numerical_threshold_config": {
"value": 0.3,
},
})
feature = gcp.vertex.AiFeatureStoreEntityTypeFeature("feature",
name="terraform2",
labels={
"foo": "bar",
},
entitytype=entity.id,
value_type="INT64_ARRAY")
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Gcp = Pulumi.Gcp;
return await Deployment.RunAsync(() =>
{
var featurestore = new Gcp.Vertex.AiFeatureStore("featurestore", new()
{
Name = "terraform2",
Labels =
{
{ "foo", "bar" },
},
Region = "us-central1",
OnlineServingConfig = new Gcp.Vertex.Inputs.AiFeatureStoreOnlineServingConfigArgs
{
FixedNodeCount = 2,
},
});
var entity = new Gcp.Vertex.AiFeatureStoreEntityType("entity", new()
{
Name = "terraform2",
Labels =
{
{ "foo", "bar" },
},
Featurestore = featurestore.Id,
MonitoringConfig = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigArgs
{
SnapshotAnalysis = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs
{
Disabled = false,
MonitoringInterval = "86400s",
},
CategoricalThresholdConfig = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs
{
Value = 0.3,
},
NumericalThresholdConfig = new Gcp.Vertex.Inputs.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs
{
Value = 0.3,
},
},
});
var feature = new Gcp.Vertex.AiFeatureStoreEntityTypeFeature("feature", new()
{
Name = "terraform2",
Labels =
{
{ "foo", "bar" },
},
Entitytype = entity.Id,
ValueType = "INT64_ARRAY",
});
});
package main
import (
"github.com/pulumi/pulumi-gcp/sdk/v7/go/gcp/vertex"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
featurestore, err := vertex.NewAiFeatureStore(ctx, "featurestore", &vertex.AiFeatureStoreArgs{
Name: pulumi.String("terraform2"),
Labels: pulumi.StringMap{
"foo": pulumi.String("bar"),
},
Region: pulumi.String("us-central1"),
OnlineServingConfig: &vertex.AiFeatureStoreOnlineServingConfigArgs{
FixedNodeCount: pulumi.Int(2),
},
})
if err != nil {
return err
}
entity, err := vertex.NewAiFeatureStoreEntityType(ctx, "entity", &vertex.AiFeatureStoreEntityTypeArgs{
Name: pulumi.String("terraform2"),
Labels: pulumi.StringMap{
"foo": pulumi.String("bar"),
},
Featurestore: featurestore.ID(),
MonitoringConfig: &vertex.AiFeatureStoreEntityTypeMonitoringConfigArgs{
SnapshotAnalysis: &vertex.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs{
Disabled: pulumi.Bool(false),
MonitoringInterval: pulumi.String("86400s"),
},
CategoricalThresholdConfig: &vertex.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs{
Value: pulumi.Float64(0.3),
},
NumericalThresholdConfig: &vertex.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs{
Value: pulumi.Float64(0.3),
},
},
})
if err != nil {
return err
}
_, err = vertex.NewAiFeatureStoreEntityTypeFeature(ctx, "feature", &vertex.AiFeatureStoreEntityTypeFeatureArgs{
Name: pulumi.String("terraform2"),
Labels: pulumi.StringMap{
"foo": pulumi.String("bar"),
},
Entitytype: entity.ID(),
ValueType: pulumi.String("INT64_ARRAY"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.vertex.AiFeatureStore;
import com.pulumi.gcp.vertex.AiFeatureStoreArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreOnlineServingConfigArgs;
import com.pulumi.gcp.vertex.AiFeatureStoreEntityType;
import com.pulumi.gcp.vertex.AiFeatureStoreEntityTypeArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs;
import com.pulumi.gcp.vertex.AiFeatureStoreEntityTypeFeature;
import com.pulumi.gcp.vertex.AiFeatureStoreEntityTypeFeatureArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var featurestore = new AiFeatureStore("featurestore", AiFeatureStoreArgs.builder()
.name("terraform2")
.labels(Map.of("foo", "bar"))
.region("us-central1")
.onlineServingConfig(AiFeatureStoreOnlineServingConfigArgs.builder()
.fixedNodeCount(2)
.build())
.build());
var entity = new AiFeatureStoreEntityType("entity", AiFeatureStoreEntityTypeArgs.builder()
.name("terraform2")
.labels(Map.of("foo", "bar"))
.featurestore(featurestore.id())
.monitoringConfig(AiFeatureStoreEntityTypeMonitoringConfigArgs.builder()
.snapshotAnalysis(AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs.builder()
.disabled(false)
.monitoringInterval("86400s")
.build())
.categoricalThresholdConfig(AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs.builder()
.value(0.3)
.build())
.numericalThresholdConfig(AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs.builder()
.value(0.3)
.build())
.build())
.build());
var feature = new AiFeatureStoreEntityTypeFeature("feature", AiFeatureStoreEntityTypeFeatureArgs.builder()
.name("terraform2")
.labels(Map.of("foo", "bar"))
.entitytype(entity.id())
.valueType("INT64_ARRAY")
.build());
}
}
resources:
featurestore:
type: gcp:vertex:AiFeatureStore
properties:
name: terraform2
labels:
foo: bar
region: us-central1
onlineServingConfig:
fixedNodeCount: 2
entity:
type: gcp:vertex:AiFeatureStoreEntityType
properties:
name: terraform2
labels:
foo: bar
featurestore: ${featurestore.id}
monitoringConfig:
snapshotAnalysis:
disabled: false
monitoringInterval: 86400s
categoricalThresholdConfig:
value: 0.3
numericalThresholdConfig:
value: 0.3
feature:
type: gcp:vertex:AiFeatureStoreEntityTypeFeature
properties:
name: terraform2
labels:
foo: bar
entitytype: ${entity.id}
valueType: INT64_ARRAY

Import

FeaturestoreEntitytypeFeature can be imported using any of these accepted formats:

  • {{entitytype}}/features/{{name}} When using the pulumi import command, FeaturestoreEntitytypeFeature can be imported using one of the formats above. For example:

$ pulumi import gcp:vertex/aiFeatureStoreEntityTypeFeature:AiFeatureStoreEntityTypeFeature default {{entitytype}}/features/{{name}}

Constructors

Link copied to clipboard
constructor(description: Output<String>? = null, entitytype: Output<String>? = null, labels: Output<Map<String, String>>? = null, name: Output<String>? = null, valueType: Output<String>? = null)

Properties

Link copied to clipboard
val description: Output<String>? = null

Description of the feature.

Link copied to clipboard
val entitytype: Output<String>? = null

The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entitytype}.

Link copied to clipboard
val labels: Output<Map<String, String>>? = null

A set of key/value label pairs to assign to the feature. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field effective_labels for all of the labels present on the resource.

Link copied to clipboard
val name: Output<String>? = null

The name of the feature. The feature can be up to 64 characters long and can consist only of ASCII Latin letters A-Z and a-z, underscore(_), and ASCII digits 0-9 starting with a letter. The value will be unique given an entity type.

Link copied to clipboard
val valueType: Output<String>? = null

Type of Feature value. Immutable. https://cloud.google.com/vertex-ai/docs/reference/rest/v1/projects.locations.featurestores.entityTypes.features#ValueType

Functions

Link copied to clipboard
open override fun toJava(): AiFeatureStoreEntityTypeFeatureArgs