AiIndexArgs

data class AiIndexArgs(val description: Output<String>? = null, val displayName: Output<String>? = null, val indexUpdateMethod: Output<String>? = null, val labels: Output<Map<String, String>>? = null, val metadata: Output<AiIndexMetadataArgs>? = null, val project: Output<String>? = null, val region: Output<String>? = null) : ConvertibleToJava<AiIndexArgs>

A representation of a collection of database items organized in a way that allows for approximate nearest neighbor (a.k.a ANN) algorithms search. To get more information about Index, see:

Example Usage

Vertex Ai Index

import * as pulumi from "@pulumi/pulumi";
import * as gcp from "@pulumi/gcp";
const bucket = new gcp.storage.Bucket("bucket", {
name: "vertex-ai-index-test",
location: "us-central1",
uniformBucketLevelAccess: true,
});
// The sample data comes from the following link:
// https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#specify-namespaces-tokens
const data = new gcp.storage.BucketObject("data", {
name: "contents/data.json",
bucket: bucket.name,
content: `{"id": "42", "embedding": [0&#46;5, 1&#46;0], "restricts": [{"namespace": "class", "allow": ["cat", "pet"]},{"namespace": "category", "allow": ["feline"]}]}
{"id": "43", "embedding": [0&#46;6, 1&#46;0], "restricts": [{"namespace": "class", "allow": ["dog", "pet"]},{"namespace": "category", "allow": ["canine"]}]}
`,
});
const index = new gcp.vertex.AiIndex("index", {
labels: {
foo: "bar",
},
region: "us-central1",
displayName: "test-index",
description: "index for test",
metadata: {
contentsDeltaUri: pulumi.interpolate`gs://${bucket.name}/contents`,
config: {
dimensions: 2,
approximateNeighborsCount: 150,
shardSize: "SHARD_SIZE_SMALL",
distanceMeasureType: "DOT_PRODUCT_DISTANCE",
algorithmConfig: {
treeAhConfig: {
leafNodeEmbeddingCount: 500,
leafNodesToSearchPercent: 7,
},
},
},
},
indexUpdateMethod: "BATCH_UPDATE",
});
import pulumi
import pulumi_gcp as gcp
bucket = gcp.storage.Bucket("bucket",
name="vertex-ai-index-test",
location="us-central1",
uniform_bucket_level_access=True)
# The sample data comes from the following link:
# https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#specify-namespaces-tokens
data = gcp.storage.BucketObject("data",
name="contents/data.json",
bucket=bucket.name,
content="""{"id": "42", "embedding": [0&#46;5, 1&#46;0], "restricts": [{"namespace": "class", "allow": ["cat", "pet"]},{"namespace": "category", "allow": ["feline"]}]}
{"id": "43", "embedding": [0&#46;6, 1&#46;0], "restricts": [{"namespace": "class", "allow": ["dog", "pet"]},{"namespace": "category", "allow": ["canine"]}]}
""")
index = gcp.vertex.AiIndex("index",
labels={
"foo": "bar",
},
region="us-central1",
display_name="test-index",
description="index for test",
metadata={
"contents_delta_uri": bucket.name.apply(lambda name: f"gs://{name}/contents"),
"config": {
"dimensions": 2,
"approximate_neighbors_count": 150,
"shard_size": "SHARD_SIZE_SMALL",
"distance_measure_type": "DOT_PRODUCT_DISTANCE",
"algorithm_config": {
"tree_ah_config": {
"leaf_node_embedding_count": 500,
"leaf_nodes_to_search_percent": 7,
},
},
},
},
index_update_method="BATCH_UPDATE")
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Gcp = Pulumi.Gcp;
return await Deployment.RunAsync(() =>
{
var bucket = new Gcp.Storage.Bucket("bucket", new()
{
Name = "vertex-ai-index-test",
Location = "us-central1",
UniformBucketLevelAccess = true,
});
// The sample data comes from the following link:
// https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#specify-namespaces-tokens
var data = new Gcp.Storage.BucketObject("data", new()
{
Name = "contents/data.json",
Bucket = bucket.Name,
Content = @"{""id"": ""42"", ""embedding"": [0&#46;5, 1&#46;0], ""restricts"": [{""namespace"": ""class"", ""allow"": [""cat"", ""pet""]},{""namespace"": ""category"", ""allow"": [""feline""]}]}
{""id"": ""43"", ""embedding"": [0&#46;6, 1&#46;0], ""restricts"": [{""namespace"": ""class"", ""allow"": [""dog"", ""pet""]},{""namespace"": ""category"", ""allow"": [""canine""]}]}
",
});
var index = new Gcp.Vertex.AiIndex("index", new()
{
Labels =
{
{ "foo", "bar" },
},
Region = "us-central1",
DisplayName = "test-index",
Description = "index for test",
Metadata = new Gcp.Vertex.Inputs.AiIndexMetadataArgs
{
ContentsDeltaUri = bucket.Name.Apply(name => $"gs://{name}/contents"),
Config = new Gcp.Vertex.Inputs.AiIndexMetadataConfigArgs
{
Dimensions = 2,
ApproximateNeighborsCount = 150,
ShardSize = "SHARD_SIZE_SMALL",
DistanceMeasureType = "DOT_PRODUCT_DISTANCE",
AlgorithmConfig = new Gcp.Vertex.Inputs.AiIndexMetadataConfigAlgorithmConfigArgs
{
TreeAhConfig = new Gcp.Vertex.Inputs.AiIndexMetadataConfigAlgorithmConfigTreeAhConfigArgs
{
LeafNodeEmbeddingCount = 500,
LeafNodesToSearchPercent = 7,
},
},
},
},
IndexUpdateMethod = "BATCH_UPDATE",
});
});
package main
import (
"fmt"
"github.com/pulumi/pulumi-gcp/sdk/v7/go/gcp/storage"
"github.com/pulumi/pulumi-gcp/sdk/v7/go/gcp/vertex"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
bucket, err := storage.NewBucket(ctx, "bucket", &storage.BucketArgs{
Name: pulumi.String("vertex-ai-index-test"),
Location: pulumi.String("us-central1"),
UniformBucketLevelAccess: pulumi.Bool(true),
})
if err != nil {
return err
}
// The sample data comes from the following link:
// https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#specify-namespaces-tokens
_, err = storage.NewBucketObject(ctx, "data", &storage.BucketObjectArgs{
Name: pulumi.String("contents/data.json"),
Bucket: bucket.Name,
Content: pulumi.String("{\"id\": \"42\", \"embedding\": [0&#46;5, 1&#46;0], \"restricts\": [{\"namespace\": \"class\", \"allow\": [\"cat\", \"pet\"]},{\"namespace\": \"category\", \"allow\": [\"feline\"]}]}\n{\"id\": \"43\", \"embedding\": [0&#46;6, 1&#46;0], \"restricts\": [{\"namespace\": \"class\", \"allow\": [\"dog\", \"pet\"]},{\"namespace\": \"category\", \"allow\": [\"canine\"]}]}\n"),
})
if err != nil {
return err
}
_, err = vertex.NewAiIndex(ctx, "index", &vertex.AiIndexArgs{
Labels: pulumi.StringMap{
"foo": pulumi.String("bar"),
},
Region: pulumi.String("us-central1"),
DisplayName: pulumi.String("test-index"),
Description: pulumi.String("index for test"),
Metadata: &vertex.AiIndexMetadataArgs{
ContentsDeltaUri: bucket.Name.ApplyT(func(name string) (string, error) {
return fmt.Sprintf("gs://%v/contents", name), nil
}).(pulumi.StringOutput),
Config: &vertex.AiIndexMetadataConfigArgs{
Dimensions: pulumi.Int(2),
ApproximateNeighborsCount: pulumi.Int(150),
ShardSize: pulumi.String("SHARD_SIZE_SMALL"),
DistanceMeasureType: pulumi.String("DOT_PRODUCT_DISTANCE"),
AlgorithmConfig: &vertex.AiIndexMetadataConfigAlgorithmConfigArgs{
TreeAhConfig: &vertex.AiIndexMetadataConfigAlgorithmConfigTreeAhConfigArgs{
LeafNodeEmbeddingCount: pulumi.Int(500),
LeafNodesToSearchPercent: pulumi.Int(7),
},
},
},
},
IndexUpdateMethod: pulumi.String("BATCH_UPDATE"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.storage.Bucket;
import com.pulumi.gcp.storage.BucketArgs;
import com.pulumi.gcp.storage.BucketObject;
import com.pulumi.gcp.storage.BucketObjectArgs;
import com.pulumi.gcp.vertex.AiIndex;
import com.pulumi.gcp.vertex.AiIndexArgs;
import com.pulumi.gcp.vertex.inputs.AiIndexMetadataArgs;
import com.pulumi.gcp.vertex.inputs.AiIndexMetadataConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiIndexMetadataConfigAlgorithmConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiIndexMetadataConfigAlgorithmConfigTreeAhConfigArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var bucket = new Bucket("bucket", BucketArgs.builder()
.name("vertex-ai-index-test")
.location("us-central1")
.uniformBucketLevelAccess(true)
.build());
// The sample data comes from the following link:
// https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#specify-namespaces-tokens
var data = new BucketObject("data", BucketObjectArgs.builder()
.name("contents/data.json")
.bucket(bucket.name())
.content("""
{"id": "42", "embedding": [0&#46;5, 1&#46;0], "restricts": [{"namespace": "class", "allow": ["cat", "pet"]},{"namespace": "category", "allow": ["feline"]}]}
{"id": "43", "embedding": [0&#46;6, 1&#46;0], "restricts": [{"namespace": "class", "allow": ["dog", "pet"]},{"namespace": "category", "allow": ["canine"]}]}
""")
.build());
var index = new AiIndex("index", AiIndexArgs.builder()
.labels(Map.of("foo", "bar"))
.region("us-central1")
.displayName("test-index")
.description("index for test")
.metadata(AiIndexMetadataArgs.builder()
.contentsDeltaUri(bucket.name().applyValue(name -> String.format("gs://%s/contents", name)))
.config(AiIndexMetadataConfigArgs.builder()
.dimensions(2)
.approximateNeighborsCount(150)
.shardSize("SHARD_SIZE_SMALL")
.distanceMeasureType("DOT_PRODUCT_DISTANCE")
.algorithmConfig(AiIndexMetadataConfigAlgorithmConfigArgs.builder()
.treeAhConfig(AiIndexMetadataConfigAlgorithmConfigTreeAhConfigArgs.builder()
.leafNodeEmbeddingCount(500)
.leafNodesToSearchPercent(7)
.build())
.build())
.build())
.build())
.indexUpdateMethod("BATCH_UPDATE")
.build());
}
}
resources:
bucket:
type: gcp:storage:Bucket
properties:
name: vertex-ai-index-test
location: us-central1
uniformBucketLevelAccess: true
# The sample data comes from the following link:
# https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#specify-namespaces-tokens
data:
type: gcp:storage:BucketObject
properties:
name: contents/data.json
bucket: ${bucket.name}
content: |
{"id": "42", "embedding": [0&#46;5, 1&#46;0], "restricts": [{"namespace": "class", "allow": ["cat", "pet"]},{"namespace": "category", "allow": ["feline"]}]}
{"id": "43", "embedding": [0&#46;6, 1&#46;0], "restricts": [{"namespace": "class", "allow": ["dog", "pet"]},{"namespace": "category", "allow": ["canine"]}]}
index:
type: gcp:vertex:AiIndex
properties:
labels:
foo: bar
region: us-central1
displayName: test-index
description: index for test
metadata:
contentsDeltaUri: gs://${bucket.name}/contents
config:
dimensions: 2
approximateNeighborsCount: 150
shardSize: SHARD_SIZE_SMALL
distanceMeasureType: DOT_PRODUCT_DISTANCE
algorithmConfig:
treeAhConfig:
leafNodeEmbeddingCount: 500
leafNodesToSearchPercent: 7
indexUpdateMethod: BATCH_UPDATE

Vertex Ai Index Streaming

import * as pulumi from "@pulumi/pulumi";
import * as gcp from "@pulumi/gcp";
const bucket = new gcp.storage.Bucket("bucket", {
name: "vertex-ai-index-test",
location: "us-central1",
uniformBucketLevelAccess: true,
});
// The sample data comes from the following link:
// https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#specify-namespaces-tokens
const data = new gcp.storage.BucketObject("data", {
name: "contents/data.json",
bucket: bucket.name,
content: `{"id": "42", "embedding": [0&#46;5, 1&#46;0], "restricts": [{"namespace": "class", "allow": ["cat", "pet"]},{"namespace": "category", "allow": ["feline"]}]}
{"id": "43", "embedding": [0&#46;6, 1&#46;0], "restricts": [{"namespace": "class", "allow": ["dog", "pet"]},{"namespace": "category", "allow": ["canine"]}]}
`,
});
const index = new gcp.vertex.AiIndex("index", {
labels: {
foo: "bar",
},
region: "us-central1",
displayName: "test-index",
description: "index for test",
metadata: {
contentsDeltaUri: pulumi.interpolate`gs://${bucket.name}/contents`,
config: {
dimensions: 2,
shardSize: "SHARD_SIZE_LARGE",
distanceMeasureType: "COSINE_DISTANCE",
featureNormType: "UNIT_L2_NORM",
algorithmConfig: {
bruteForceConfig: {},
},
},
},
indexUpdateMethod: "STREAM_UPDATE",
});
import pulumi
import pulumi_gcp as gcp
bucket = gcp.storage.Bucket("bucket",
name="vertex-ai-index-test",
location="us-central1",
uniform_bucket_level_access=True)
# The sample data comes from the following link:
# https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#specify-namespaces-tokens
data = gcp.storage.BucketObject("data",
name="contents/data.json",
bucket=bucket.name,
content="""{"id": "42", "embedding": [0&#46;5, 1&#46;0], "restricts": [{"namespace": "class", "allow": ["cat", "pet"]},{"namespace": "category", "allow": ["feline"]}]}
{"id": "43", "embedding": [0&#46;6, 1&#46;0], "restricts": [{"namespace": "class", "allow": ["dog", "pet"]},{"namespace": "category", "allow": ["canine"]}]}
""")
index = gcp.vertex.AiIndex("index",
labels={
"foo": "bar",
},
region="us-central1",
display_name="test-index",
description="index for test",
metadata={
"contents_delta_uri": bucket.name.apply(lambda name: f"gs://{name}/contents"),
"config": {
"dimensions": 2,
"shard_size": "SHARD_SIZE_LARGE",
"distance_measure_type": "COSINE_DISTANCE",
"feature_norm_type": "UNIT_L2_NORM",
"algorithm_config": {
"brute_force_config": {},
},
},
},
index_update_method="STREAM_UPDATE")
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Gcp = Pulumi.Gcp;
return await Deployment.RunAsync(() =>
{
var bucket = new Gcp.Storage.Bucket("bucket", new()
{
Name = "vertex-ai-index-test",
Location = "us-central1",
UniformBucketLevelAccess = true,
});
// The sample data comes from the following link:
// https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#specify-namespaces-tokens
var data = new Gcp.Storage.BucketObject("data", new()
{
Name = "contents/data.json",
Bucket = bucket.Name,
Content = @"{""id"": ""42"", ""embedding"": [0&#46;5, 1&#46;0], ""restricts"": [{""namespace"": ""class"", ""allow"": [""cat"", ""pet""]},{""namespace"": ""category"", ""allow"": [""feline""]}]}
{""id"": ""43"", ""embedding"": [0&#46;6, 1&#46;0], ""restricts"": [{""namespace"": ""class"", ""allow"": [""dog"", ""pet""]},{""namespace"": ""category"", ""allow"": [""canine""]}]}
",
});
var index = new Gcp.Vertex.AiIndex("index", new()
{
Labels =
{
{ "foo", "bar" },
},
Region = "us-central1",
DisplayName = "test-index",
Description = "index for test",
Metadata = new Gcp.Vertex.Inputs.AiIndexMetadataArgs
{
ContentsDeltaUri = bucket.Name.Apply(name => $"gs://{name}/contents"),
Config = new Gcp.Vertex.Inputs.AiIndexMetadataConfigArgs
{
Dimensions = 2,
ShardSize = "SHARD_SIZE_LARGE",
DistanceMeasureType = "COSINE_DISTANCE",
FeatureNormType = "UNIT_L2_NORM",
AlgorithmConfig = new Gcp.Vertex.Inputs.AiIndexMetadataConfigAlgorithmConfigArgs
{
BruteForceConfig = null,
},
},
},
IndexUpdateMethod = "STREAM_UPDATE",
});
});
package main
import (
"fmt"
"github.com/pulumi/pulumi-gcp/sdk/v7/go/gcp/storage"
"github.com/pulumi/pulumi-gcp/sdk/v7/go/gcp/vertex"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
bucket, err := storage.NewBucket(ctx, "bucket", &storage.BucketArgs{
Name: pulumi.String("vertex-ai-index-test"),
Location: pulumi.String("us-central1"),
UniformBucketLevelAccess: pulumi.Bool(true),
})
if err != nil {
return err
}
// The sample data comes from the following link:
// https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#specify-namespaces-tokens
_, err = storage.NewBucketObject(ctx, "data", &storage.BucketObjectArgs{
Name: pulumi.String("contents/data.json"),
Bucket: bucket.Name,
Content: pulumi.String("{\"id\": \"42\", \"embedding\": [0&#46;5, 1&#46;0], \"restricts\": [{\"namespace\": \"class\", \"allow\": [\"cat\", \"pet\"]},{\"namespace\": \"category\", \"allow\": [\"feline\"]}]}\n{\"id\": \"43\", \"embedding\": [0&#46;6, 1&#46;0], \"restricts\": [{\"namespace\": \"class\", \"allow\": [\"dog\", \"pet\"]},{\"namespace\": \"category\", \"allow\": [\"canine\"]}]}\n"),
})
if err != nil {
return err
}
_, err = vertex.NewAiIndex(ctx, "index", &vertex.AiIndexArgs{
Labels: pulumi.StringMap{
"foo": pulumi.String("bar"),
},
Region: pulumi.String("us-central1"),
DisplayName: pulumi.String("test-index"),
Description: pulumi.String("index for test"),
Metadata: &vertex.AiIndexMetadataArgs{
ContentsDeltaUri: bucket.Name.ApplyT(func(name string) (string, error) {
return fmt.Sprintf("gs://%v/contents", name), nil
}).(pulumi.StringOutput),
Config: &vertex.AiIndexMetadataConfigArgs{
Dimensions: pulumi.Int(2),
ShardSize: pulumi.String("SHARD_SIZE_LARGE"),
DistanceMeasureType: pulumi.String("COSINE_DISTANCE"),
FeatureNormType: pulumi.String("UNIT_L2_NORM"),
AlgorithmConfig: &vertex.AiIndexMetadataConfigAlgorithmConfigArgs{
BruteForceConfig: nil,
},
},
},
IndexUpdateMethod: pulumi.String("STREAM_UPDATE"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.storage.Bucket;
import com.pulumi.gcp.storage.BucketArgs;
import com.pulumi.gcp.storage.BucketObject;
import com.pulumi.gcp.storage.BucketObjectArgs;
import com.pulumi.gcp.vertex.AiIndex;
import com.pulumi.gcp.vertex.AiIndexArgs;
import com.pulumi.gcp.vertex.inputs.AiIndexMetadataArgs;
import com.pulumi.gcp.vertex.inputs.AiIndexMetadataConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiIndexMetadataConfigAlgorithmConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiIndexMetadataConfigAlgorithmConfigBruteForceConfigArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var bucket = new Bucket("bucket", BucketArgs.builder()
.name("vertex-ai-index-test")
.location("us-central1")
.uniformBucketLevelAccess(true)
.build());
// The sample data comes from the following link:
// https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#specify-namespaces-tokens
var data = new BucketObject("data", BucketObjectArgs.builder()
.name("contents/data.json")
.bucket(bucket.name())
.content("""
{"id": "42", "embedding": [0&#46;5, 1&#46;0], "restricts": [{"namespace": "class", "allow": ["cat", "pet"]},{"namespace": "category", "allow": ["feline"]}]}
{"id": "43", "embedding": [0&#46;6, 1&#46;0], "restricts": [{"namespace": "class", "allow": ["dog", "pet"]},{"namespace": "category", "allow": ["canine"]}]}
""")
.build());
var index = new AiIndex("index", AiIndexArgs.builder()
.labels(Map.of("foo", "bar"))
.region("us-central1")
.displayName("test-index")
.description("index for test")
.metadata(AiIndexMetadataArgs.builder()
.contentsDeltaUri(bucket.name().applyValue(name -> String.format("gs://%s/contents", name)))
.config(AiIndexMetadataConfigArgs.builder()
.dimensions(2)
.shardSize("SHARD_SIZE_LARGE")
.distanceMeasureType("COSINE_DISTANCE")
.featureNormType("UNIT_L2_NORM")
.algorithmConfig(AiIndexMetadataConfigAlgorithmConfigArgs.builder()
.bruteForceConfig()
.build())
.build())
.build())
.indexUpdateMethod("STREAM_UPDATE")
.build());
}
}
resources:
bucket:
type: gcp:storage:Bucket
properties:
name: vertex-ai-index-test
location: us-central1
uniformBucketLevelAccess: true
# The sample data comes from the following link:
# https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#specify-namespaces-tokens
data:
type: gcp:storage:BucketObject
properties:
name: contents/data.json
bucket: ${bucket.name}
content: |
{"id": "42", "embedding": [0&#46;5, 1&#46;0], "restricts": [{"namespace": "class", "allow": ["cat", "pet"]},{"namespace": "category", "allow": ["feline"]}]}
{"id": "43", "embedding": [0&#46;6, 1&#46;0], "restricts": [{"namespace": "class", "allow": ["dog", "pet"]},{"namespace": "category", "allow": ["canine"]}]}
index:
type: gcp:vertex:AiIndex
properties:
labels:
foo: bar
region: us-central1
displayName: test-index
description: index for test
metadata:
contentsDeltaUri: gs://${bucket.name}/contents
config:
dimensions: 2
shardSize: SHARD_SIZE_LARGE
distanceMeasureType: COSINE_DISTANCE
featureNormType: UNIT_L2_NORM
algorithmConfig:
bruteForceConfig: {}
indexUpdateMethod: STREAM_UPDATE

Import

Index can be imported using any of these accepted formats:

  • projects/{{project}}/locations/{{region}}/indexes/{{name}}

  • {{project}}/{{region}}/{{name}}

  • {{region}}/{{name}}

  • {{name}} When using the pulumi import command, Index can be imported using one of the formats above. For example:

$ pulumi import gcp:vertex/aiIndex:AiIndex default projects/{{project}}/locations/{{region}}/indexes/{{name}}
$ pulumi import gcp:vertex/aiIndex:AiIndex default {{project}}/{{region}}/{{name}}
$ pulumi import gcp:vertex/aiIndex:AiIndex default {{region}}/{{name}}
$ pulumi import gcp:vertex/aiIndex:AiIndex default {{name}}

Constructors

Link copied to clipboard
constructor(description: Output<String>? = null, displayName: Output<String>? = null, indexUpdateMethod: Output<String>? = null, labels: Output<Map<String, String>>? = null, metadata: Output<AiIndexMetadataArgs>? = null, project: Output<String>? = null, region: Output<String>? = null)

Properties

Link copied to clipboard
val description: Output<String>? = null

The description of the Index.

Link copied to clipboard
val displayName: Output<String>? = null

The display name of the Index. The name can be up to 128 characters long and can consist of any UTF-8 characters.

Link copied to clipboard
val indexUpdateMethod: Output<String>? = null

The update method to use with this Index. The value must be the followings. If not set, BATCH_UPDATE will be used by default.

Link copied to clipboard
val labels: Output<Map<String, String>>? = null

The labels with user-defined metadata to organize your Indexes. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field effective_labels for all of the labels present on the resource.

Link copied to clipboard
val metadata: Output<AiIndexMetadataArgs>? = null

An additional information about the Index Structure is documented below.

Link copied to clipboard
val project: Output<String>? = null

The ID of the project in which the resource belongs. If it is not provided, the provider project is used.

Link copied to clipboard
val region: Output<String>? = null

The region of the index. eg us-central1

Functions

Link copied to clipboard
open override fun toJava(): AiIndexArgs