AiEndpointArgs

data class AiEndpointArgs(val dedicatedEndpointEnabled: Output<Boolean>? = null, val description: Output<String>? = null, val displayName: Output<String>? = null, val encryptionSpec: Output<AiEndpointEncryptionSpecArgs>? = null, val labels: Output<Map<String, String>>? = null, val location: Output<String>? = null, val name: Output<String>? = null, val network: Output<String>? = null, val predictRequestResponseLoggingConfig: Output<AiEndpointPredictRequestResponseLoggingConfigArgs>? = null, val privateServiceConnectConfig: Output<AiEndpointPrivateServiceConnectConfigArgs>? = null, val project: Output<String>? = null, val region: Output<String>? = null, val trafficSplit: Output<String>? = null) : ConvertibleToJava<AiEndpointArgs>

Models are deployed into it, and afterwards Endpoint is called to obtain predictions and explanations. To get more information about Endpoint, see:

Example Usage

Vertex Ai Endpoint Network

import * as pulumi from "@pulumi/pulumi";
import * as gcp from "@pulumi/gcp";
const vertexNetwork = new gcp.compute.Network("vertex_network", {name: "network-name"});
const vertexRange = new gcp.compute.GlobalAddress("vertex_range", {
name: "address-name",
purpose: "VPC_PEERING",
addressType: "INTERNAL",
prefixLength: 24,
network: vertexNetwork.id,
});
const vertexVpcConnection = new gcp.servicenetworking.Connection("vertex_vpc_connection", {
network: vertexNetwork.id,
service: "servicenetworking.googleapis.com",
reservedPeeringRanges: [vertexRange&#46;name],
});
const bqDataset = new gcp.bigquery.Dataset("bq_dataset", {
datasetId: "some_dataset",
friendlyName: "logging dataset",
description: "This is a dataset that requests are logged to",
location: "US",
deleteContentsOnDestroy: true,
});
const project = gcp.organizations.getProject({});
const endpoint = new gcp.vertex.AiEndpoint("endpoint", {
name: "endpoint-name",
displayName: "sample-endpoint",
description: "A sample vertex endpoint",
location: "us-central1",
region: "us-central1",
labels: {
"label-one": "value-one",
},
network: pulumi.all([project, vertexNetwork&#46;name])&#46;apply(([project, name]) => `projects/${project.number}/global/networks/${name}`),
encryptionSpec: {
kmsKeyName: "kms-name",
},
predictRequestResponseLoggingConfig: {
bigqueryDestination: {
outputUri: pulumi.all([project, bqDataset&#46;datasetId])&#46;apply(([project, datasetId]) => `bq://${project.projectId}.${datasetId}.request_response_logging`),
},
enabled: true,
samplingRate: 0.1,
},
trafficSplit: JSON.stringify({
"12345": 100,
}),
}, {
dependsOn: [vertexVpcConnection],
});
const cryptoKey = new gcp.kms.CryptoKeyIAMMember("crypto_key", {
cryptoKeyId: "kms-name",
role: "roles/cloudkms.cryptoKeyEncrypterDecrypter",
member: project.then(project => `serviceAccount:service-${project.number}@gcp-sa-aiplatform.iam.gserviceaccount.com`),
});
import pulumi
import json
import pulumi_gcp as gcp
vertex_network = gcp.compute.Network("vertex_network", name="network-name")
vertex_range = gcp.compute.GlobalAddress("vertex_range",
name="address-name",
purpose="VPC_PEERING",
address_type="INTERNAL",
prefix_length=24,
network=vertex_network.id)
vertex_vpc_connection = gcp.servicenetworking.Connection("vertex_vpc_connection",
network=vertex_network.id,
service="servicenetworking.googleapis.com",
reserved_peering_ranges=[vertex_range&#46;name])
bq_dataset = gcp.bigquery.Dataset("bq_dataset",
dataset_id="some_dataset",
friendly_name="logging dataset",
description="This is a dataset that requests are logged to",
location="US",
delete_contents_on_destroy=True)
project = gcp.organizations.get_project()
endpoint = gcp.vertex.AiEndpoint("endpoint",
name="endpoint-name",
display_name="sample-endpoint",
description="A sample vertex endpoint",
location="us-central1",
region="us-central1",
labels={
"label-one": "value-one",
},
network=vertex_network.name.apply(lambda name: f"projects/{project.number}/global/networks/{name}"),
encryption_spec={
"kms_key_name": "kms-name",
},
predict_request_response_logging_config={
"bigquery_destination": {
"output_uri": bq_dataset.dataset_id.apply(lambda dataset_id: f"bq://{project.project_id}.{dataset_id}.request_response_logging"),
},
"enabled": True,
"sampling_rate": 0.1,
},
traffic_split=json.dumps({
"12345": 100,
}),
opts = pulumi.ResourceOptions(depends_on=[vertex_vpc_connection]))
crypto_key = gcp.kms.CryptoKeyIAMMember("crypto_key",
crypto_key_id="kms-name",
role="roles/cloudkms.cryptoKeyEncrypterDecrypter",
member=f"serviceAccount:service-{project.number}@gcp-sa-aiplatform.iam.gserviceaccount.com")
using System.Collections.Generic;
using System.Linq;
using System.Text.Json;
using Pulumi;
using Gcp = Pulumi.Gcp;
return await Deployment.RunAsync(() =>
{
var vertexNetwork = new Gcp.Compute.Network("vertex_network", new()
{
Name = "network-name",
});
var vertexRange = new Gcp.Compute.GlobalAddress("vertex_range", new()
{
Name = "address-name",
Purpose = "VPC_PEERING",
AddressType = "INTERNAL",
PrefixLength = 24,
Network = vertexNetwork.Id,
});
var vertexVpcConnection = new Gcp.ServiceNetworking.Connection("vertex_vpc_connection", new()
{
Network = vertexNetwork.Id,
Service = "servicenetworking.googleapis.com",
ReservedPeeringRanges = new[]
{
vertexRange.Name,
},
});
var bqDataset = new Gcp.BigQuery.Dataset("bq_dataset", new()
{
DatasetId = "some_dataset",
FriendlyName = "logging dataset",
Description = "This is a dataset that requests are logged to",
Location = "US",
DeleteContentsOnDestroy = true,
});
var project = Gcp.Organizations.GetProject.Invoke();
var endpoint = new Gcp.Vertex.AiEndpoint("endpoint", new()
{
Name = "endpoint-name",
DisplayName = "sample-endpoint",
Description = "A sample vertex endpoint",
Location = "us-central1",
Region = "us-central1",
Labels =
{
{ "label-one", "value-one" },
},
Network = Output.Tuple(project, vertexNetwork.Name).Apply(values =>
{
var project = values.Item1;
var name = values.Item2;
return $"projects/{project.Apply(getProjectResult => getProjectResult.Number)}/global/networks/{name}";
}),
EncryptionSpec = new Gcp.Vertex.Inputs.AiEndpointEncryptionSpecArgs
{
KmsKeyName = "kms-name",
},
PredictRequestResponseLoggingConfig = new Gcp.Vertex.Inputs.AiEndpointPredictRequestResponseLoggingConfigArgs
{
BigqueryDestination = new Gcp.Vertex.Inputs.AiEndpointPredictRequestResponseLoggingConfigBigqueryDestinationArgs
{
OutputUri = Output.Tuple(project, bqDataset.DatasetId).Apply(values =>
{
var project = values.Item1;
var datasetId = values.Item2;
return $"bq://{project.Apply(getProjectResult => getProjectResult.ProjectId)}.{datasetId}.request_response_logging";
}),
},
Enabled = true,
SamplingRate = 0.1,
},
TrafficSplit = JsonSerializer.Serialize(new Dictionary<string, object?>
{
["12345"] = 100,
}),
}, new CustomResourceOptions
{
DependsOn =
{
vertexVpcConnection,
},
});
var cryptoKey = new Gcp.Kms.CryptoKeyIAMMember("crypto_key", new()
{
CryptoKeyId = "kms-name",
Role = "roles/cloudkms.cryptoKeyEncrypterDecrypter",
Member = $"serviceAccount:service-{project.Apply(getProjectResult => getProjectResult.Number)}@gcp-sa-aiplatform.iam.gserviceaccount.com",
});
});
package main
import (
"encoding/json"
"fmt"
"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/bigquery"
"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/compute"
"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/kms"
"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/organizations"
"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/servicenetworking"
"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/vertex"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
vertexNetwork, err := compute.NewNetwork(ctx, "vertex_network", &compute.NetworkArgs{
Name: pulumi.String("network-name"),
})
if err != nil {
return err
}
vertexRange, err := compute.NewGlobalAddress(ctx, "vertex_range", &compute.GlobalAddressArgs{
Name: pulumi.String("address-name"),
Purpose: pulumi.String("VPC_PEERING"),
AddressType: pulumi.String("INTERNAL"),
PrefixLength: pulumi.Int(24),
Network: vertexNetwork.ID(),
})
if err != nil {
return err
}
vertexVpcConnection, err := servicenetworking.NewConnection(ctx, "vertex_vpc_connection", &servicenetworking.ConnectionArgs{
Network: vertexNetwork.ID(),
Service: pulumi.String("servicenetworking.googleapis.com"),
ReservedPeeringRanges: pulumi.StringArray{
vertexRange.Name,
},
})
if err != nil {
return err
}
bqDataset, err := bigquery.NewDataset(ctx, "bq_dataset", &bigquery.DatasetArgs{
DatasetId: pulumi.String("some_dataset"),
FriendlyName: pulumi.String("logging dataset"),
Description: pulumi.String("This is a dataset that requests are logged to"),
Location: pulumi.String("US"),
DeleteContentsOnDestroy: pulumi.Bool(true),
})
if err != nil {
return err
}
project, err := organizations.LookupProject(ctx, &organizations.LookupProjectArgs{}, nil)
if err != nil {
return err
}
tmpJSON0, err := json.Marshal(map[string]interface{}{
"12345": 100,
})
if err != nil {
return err
}
json0 := string(tmpJSON0)
_, err = vertex.NewAiEndpoint(ctx, "endpoint", &vertex.AiEndpointArgs{
Name: pulumi.String("endpoint-name"),
DisplayName: pulumi.String("sample-endpoint"),
Description: pulumi.String("A sample vertex endpoint"),
Location: pulumi.String("us-central1"),
Region: pulumi.String("us-central1"),
Labels: pulumi.StringMap{
"label-one": pulumi.String("value-one"),
},
Network: vertexNetwork.Name.ApplyT(func(name string) (string, error) {
return fmt.Sprintf("projects/%v/global/networks/%v", project.Number, name), nil
}).(pulumi.StringOutput),
EncryptionSpec: &vertex.AiEndpointEncryptionSpecArgs{
KmsKeyName: pulumi.String("kms-name"),
},
PredictRequestResponseLoggingConfig: &vertex.AiEndpointPredictRequestResponseLoggingConfigArgs{
BigqueryDestination: &vertex.AiEndpointPredictRequestResponseLoggingConfigBigqueryDestinationArgs{
OutputUri: bqDataset.DatasetId.ApplyT(func(datasetId string) (string, error) {
return fmt.Sprintf("bq://%v.%v.request_response_logging", project.ProjectId, datasetId), nil
}).(pulumi.StringOutput),
},
Enabled: pulumi.Bool(true),
SamplingRate: pulumi.Float64(0.1),
},
TrafficSplit: pulumi.String(json0),
}, pulumi.DependsOn([]pulumi.Resource{
vertexVpcConnection,
}))
if err != nil {
return err
}
_, err = kms.NewCryptoKeyIAMMember(ctx, "crypto_key", &kms.CryptoKeyIAMMemberArgs{
CryptoKeyId: pulumi.String("kms-name"),
Role: pulumi.String("roles/cloudkms.cryptoKeyEncrypterDecrypter"),
Member: pulumi.Sprintf("serviceAccount:service-%v@gcp-sa-aiplatform.iam.gserviceaccount.com", project.Number),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.compute.Network;
import com.pulumi.gcp.compute.NetworkArgs;
import com.pulumi.gcp.compute.GlobalAddress;
import com.pulumi.gcp.compute.GlobalAddressArgs;
import com.pulumi.gcp.servicenetworking.Connection;
import com.pulumi.gcp.servicenetworking.ConnectionArgs;
import com.pulumi.gcp.bigquery.Dataset;
import com.pulumi.gcp.bigquery.DatasetArgs;
import com.pulumi.gcp.organizations.OrganizationsFunctions;
import com.pulumi.gcp.organizations.inputs.GetProjectArgs;
import com.pulumi.gcp.vertex.AiEndpoint;
import com.pulumi.gcp.vertex.AiEndpointArgs;
import com.pulumi.gcp.vertex.inputs.AiEndpointEncryptionSpecArgs;
import com.pulumi.gcp.vertex.inputs.AiEndpointPredictRequestResponseLoggingConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiEndpointPredictRequestResponseLoggingConfigBigqueryDestinationArgs;
import com.pulumi.gcp.kms.CryptoKeyIAMMember;
import com.pulumi.gcp.kms.CryptoKeyIAMMemberArgs;
import static com.pulumi.codegen.internal.Serialization.*;
import com.pulumi.resources.CustomResourceOptions;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var vertexNetwork = new Network("vertexNetwork", NetworkArgs.builder()
.name("network-name")
.build());
var vertexRange = new GlobalAddress("vertexRange", GlobalAddressArgs.builder()
.name("address-name")
.purpose("VPC_PEERING")
.addressType("INTERNAL")
.prefixLength(24)
.network(vertexNetwork.id())
.build());
var vertexVpcConnection = new Connection("vertexVpcConnection", ConnectionArgs.builder()
.network(vertexNetwork.id())
.service("servicenetworking.googleapis.com")
.reservedPeeringRanges(vertexRange.name())
.build());
var bqDataset = new Dataset("bqDataset", DatasetArgs.builder()
.datasetId("some_dataset")
.friendlyName("logging dataset")
.description("This is a dataset that requests are logged to")
.location("US")
.deleteContentsOnDestroy(true)
.build());
final var project = OrganizationsFunctions.getProject(GetProjectArgs.builder()
.build());
var endpoint = new AiEndpoint("endpoint", AiEndpointArgs.builder()
.name("endpoint-name")
.displayName("sample-endpoint")
.description("A sample vertex endpoint")
.location("us-central1")
.region("us-central1")
.labels(Map.of("label-one", "value-one"))
.network(vertexNetwork.name().applyValue(_name -> String.format("projects/%s/global/networks/%s", project.number(),_name)))
.encryptionSpec(AiEndpointEncryptionSpecArgs.builder()
.kmsKeyName("kms-name")
.build())
.predictRequestResponseLoggingConfig(AiEndpointPredictRequestResponseLoggingConfigArgs.builder()
.bigqueryDestination(AiEndpointPredictRequestResponseLoggingConfigBigqueryDestinationArgs.builder()
.outputUri(bqDataset.datasetId().applyValue(_datasetId -> String.format("bq://%s.%s.request_response_logging", project.projectId(),_datasetId)))
.build())
.enabled(true)
.samplingRate(0.1)
.build())
.trafficSplit(serializeJson(
jsonObject(
jsonProperty("12345", 100)
)))
.build(), CustomResourceOptions.builder()
.dependsOn(vertexVpcConnection)
.build());
var cryptoKey = new CryptoKeyIAMMember("cryptoKey", CryptoKeyIAMMemberArgs.builder()
.cryptoKeyId("kms-name")
.role("roles/cloudkms.cryptoKeyEncrypterDecrypter")
.member(String.format("serviceAccount:service-%s@gcp-sa-aiplatform.iam.gserviceaccount.com", project.number()))
.build());
}
}
resources:
endpoint:
type: gcp:vertex:AiEndpoint
properties:
name: endpoint-name
displayName: sample-endpoint
description: A sample vertex endpoint
location: us-central1
region: us-central1
labels:
label-one: value-one
network: projects/${project.number}/global/networks/${vertexNetwork.name}
encryptionSpec:
kmsKeyName: kms-name
predictRequestResponseLoggingConfig:
bigqueryDestination:
outputUri: bq://${project.projectId}.${bqDataset.datasetId}.request_response_logging
enabled: true
samplingRate: 0.1
trafficSplit:
fn::toJSON:
'12345': 100
options:
dependsOn:
- ${vertexVpcConnection}
vertexVpcConnection:
type: gcp:servicenetworking:Connection
name: vertex_vpc_connection
properties:
network: ${vertexNetwork.id}
service: servicenetworking.googleapis.com
reservedPeeringRanges:
- ${vertexRange.name}
vertexRange:
type: gcp:compute:GlobalAddress
name: vertex_range
properties:
name: address-name
purpose: VPC_PEERING
addressType: INTERNAL
prefixLength: 24
network: ${vertexNetwork.id}
vertexNetwork:
type: gcp:compute:Network
name: vertex_network
properties:
name: network-name
cryptoKey:
type: gcp:kms:CryptoKeyIAMMember
name: crypto_key
properties:
cryptoKeyId: kms-name
role: roles/cloudkms.cryptoKeyEncrypterDecrypter
member: serviceAccount:service-${project.number}@gcp-sa-aiplatform.iam.gserviceaccount.com
bqDataset:
type: gcp:bigquery:Dataset
name: bq_dataset
properties:
datasetId: some_dataset
friendlyName: logging dataset
description: This is a dataset that requests are logged to
location: US
deleteContentsOnDestroy: true
variables:
project:
fn::invoke:
function: gcp:organizations:getProject
arguments: {}

Vertex Ai Endpoint Private Service Connect

import * as pulumi from "@pulumi/pulumi";
import * as gcp from "@pulumi/gcp";
const project = gcp.organizations.getProject({});
const endpoint = new gcp.vertex.AiEndpoint("endpoint", {
name: "endpoint-name_9394",
displayName: "sample-endpoint",
description: "A sample vertex endpoint",
location: "us-central1",
region: "us-central1",
labels: {
"label-one": "value-one",
},
privateServiceConnectConfig: {
enablePrivateServiceConnect: true,
projectAllowlists: [project&#46;then(project => project&#46;projectId)],
enableSecurePrivateServiceConnect: false,
},
});
import pulumi
import pulumi_gcp as gcp
project = gcp.organizations.get_project()
endpoint = gcp.vertex.AiEndpoint("endpoint",
name="endpoint-name_9394",
display_name="sample-endpoint",
description="A sample vertex endpoint",
location="us-central1",
region="us-central1",
labels={
"label-one": "value-one",
},
private_service_connect_config={
"enable_private_service_connect": True,
"project_allowlists": [project&#46;project_id],
"enable_secure_private_service_connect": False,
})
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Gcp = Pulumi.Gcp;
return await Deployment.RunAsync(() =>
{
var project = Gcp.Organizations.GetProject.Invoke();
var endpoint = new Gcp.Vertex.AiEndpoint("endpoint", new()
{
Name = "endpoint-name_9394",
DisplayName = "sample-endpoint",
Description = "A sample vertex endpoint",
Location = "us-central1",
Region = "us-central1",
Labels =
{
{ "label-one", "value-one" },
},
PrivateServiceConnectConfig = new Gcp.Vertex.Inputs.AiEndpointPrivateServiceConnectConfigArgs
{
EnablePrivateServiceConnect = true,
ProjectAllowlists = new[]
{
project.Apply(getProjectResult => getProjectResult.ProjectId),
},
EnableSecurePrivateServiceConnect = false,
},
});
});
package main
import (
"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/organizations"
"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/vertex"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
project, err := organizations.LookupProject(ctx, &organizations.LookupProjectArgs{}, nil)
if err != nil {
return err
}
_, err = vertex.NewAiEndpoint(ctx, "endpoint", &vertex.AiEndpointArgs{
Name: pulumi.String("endpoint-name_9394"),
DisplayName: pulumi.String("sample-endpoint"),
Description: pulumi.String("A sample vertex endpoint"),
Location: pulumi.String("us-central1"),
Region: pulumi.String("us-central1"),
Labels: pulumi.StringMap{
"label-one": pulumi.String("value-one"),
},
PrivateServiceConnectConfig: &vertex.AiEndpointPrivateServiceConnectConfigArgs{
EnablePrivateServiceConnect: pulumi.Bool(true),
ProjectAllowlists: pulumi.StringArray{
pulumi.String(project.ProjectId),
},
EnableSecurePrivateServiceConnect: pulumi.Bool(false),
},
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.organizations.OrganizationsFunctions;
import com.pulumi.gcp.organizations.inputs.GetProjectArgs;
import com.pulumi.gcp.vertex.AiEndpoint;
import com.pulumi.gcp.vertex.AiEndpointArgs;
import com.pulumi.gcp.vertex.inputs.AiEndpointPrivateServiceConnectConfigArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
final var project = OrganizationsFunctions.getProject(GetProjectArgs.builder()
.build());
var endpoint = new AiEndpoint("endpoint", AiEndpointArgs.builder()
.name("endpoint-name_9394")
.displayName("sample-endpoint")
.description("A sample vertex endpoint")
.location("us-central1")
.region("us-central1")
.labels(Map.of("label-one", "value-one"))
.privateServiceConnectConfig(AiEndpointPrivateServiceConnectConfigArgs.builder()
.enablePrivateServiceConnect(true)
.projectAllowlists(project.projectId())
.enableSecurePrivateServiceConnect(false)
.build())
.build());
}
}
resources:
endpoint:
type: gcp:vertex:AiEndpoint
properties:
name: endpoint-name_9394
displayName: sample-endpoint
description: A sample vertex endpoint
location: us-central1
region: us-central1
labels:
label-one: value-one
privateServiceConnectConfig:
enablePrivateServiceConnect: true
projectAllowlists:
- ${project.projectId}
enableSecurePrivateServiceConnect: false
variables:
project:
fn::invoke:
function: gcp:organizations:getProject
arguments: {}

Vertex Ai Endpoint Dedicated Endpoint

import * as pulumi from "@pulumi/pulumi";
import * as gcp from "@pulumi/gcp";
const endpoint = new gcp.vertex.AiEndpoint("endpoint", {
name: "endpoint-name_11380",
displayName: "sample-endpoint",
description: "A sample vertex endpoint",
location: "us-central1",
region: "us-central1",
labels: {
"label-one": "value-one",
},
dedicatedEndpointEnabled: true,
});
const project = gcp.organizations.getProject({});
import pulumi
import pulumi_gcp as gcp
endpoint = gcp.vertex.AiEndpoint("endpoint",
name="endpoint-name_11380",
display_name="sample-endpoint",
description="A sample vertex endpoint",
location="us-central1",
region="us-central1",
labels={
"label-one": "value-one",
},
dedicated_endpoint_enabled=True)
project = gcp.organizations.get_project()
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Gcp = Pulumi.Gcp;
return await Deployment.RunAsync(() =>
{
var endpoint = new Gcp.Vertex.AiEndpoint("endpoint", new()
{
Name = "endpoint-name_11380",
DisplayName = "sample-endpoint",
Description = "A sample vertex endpoint",
Location = "us-central1",
Region = "us-central1",
Labels =
{
{ "label-one", "value-one" },
},
DedicatedEndpointEnabled = true,
});
var project = Gcp.Organizations.GetProject.Invoke();
});
package main
import (
"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/organizations"
"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/vertex"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := vertex.NewAiEndpoint(ctx, "endpoint", &vertex.AiEndpointArgs{
Name: pulumi.String("endpoint-name_11380"),
DisplayName: pulumi.String("sample-endpoint"),
Description: pulumi.String("A sample vertex endpoint"),
Location: pulumi.String("us-central1"),
Region: pulumi.String("us-central1"),
Labels: pulumi.StringMap{
"label-one": pulumi.String("value-one"),
},
DedicatedEndpointEnabled: pulumi.Bool(true),
})
if err != nil {
return err
}
_, err = organizations.LookupProject(ctx, &organizations.LookupProjectArgs{}, nil)
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.vertex.AiEndpoint;
import com.pulumi.gcp.vertex.AiEndpointArgs;
import com.pulumi.gcp.organizations.OrganizationsFunctions;
import com.pulumi.gcp.organizations.inputs.GetProjectArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var endpoint = new AiEndpoint("endpoint", AiEndpointArgs.builder()
.name("endpoint-name_11380")
.displayName("sample-endpoint")
.description("A sample vertex endpoint")
.location("us-central1")
.region("us-central1")
.labels(Map.of("label-one", "value-one"))
.dedicatedEndpointEnabled(true)
.build());
final var project = OrganizationsFunctions.getProject(GetProjectArgs.builder()
.build());
}
}
resources:
endpoint:
type: gcp:vertex:AiEndpoint
properties:
name: endpoint-name_11380
displayName: sample-endpoint
description: A sample vertex endpoint
location: us-central1
region: us-central1
labels:
label-one: value-one
dedicatedEndpointEnabled: true
variables:
project:
fn::invoke:
function: gcp:organizations:getProject
arguments: {}

Import

Endpoint can be imported using any of these accepted formats:

  • projects/{{project}}/locations/{{location}}/endpoints/{{name}}

  • {{project}}/{{location}}/{{name}}

  • {{location}}/{{name}} When using the pulumi import command, Endpoint can be imported using one of the formats above. For example:

$ pulumi import gcp:vertex/aiEndpoint:AiEndpoint default projects/{{project}}/locations/{{location}}/endpoints/{{name}}
$ pulumi import gcp:vertex/aiEndpoint:AiEndpoint default {{project}}/{{location}}/{{name}}
$ pulumi import gcp:vertex/aiEndpoint:AiEndpoint default {{location}}/{{name}}

Constructors

Link copied to clipboard
constructor(dedicatedEndpointEnabled: Output<Boolean>? = null, description: Output<String>? = null, displayName: Output<String>? = null, encryptionSpec: Output<AiEndpointEncryptionSpecArgs>? = null, labels: Output<Map<String, String>>? = null, location: Output<String>? = null, name: Output<String>? = null, network: Output<String>? = null, predictRequestResponseLoggingConfig: Output<AiEndpointPredictRequestResponseLoggingConfigArgs>? = null, privateServiceConnectConfig: Output<AiEndpointPrivateServiceConnectConfigArgs>? = null, project: Output<String>? = null, region: Output<String>? = null, trafficSplit: Output<String>? = null)

Properties

Link copied to clipboard
val dedicatedEndpointEnabled: Output<Boolean>? = null

If true, the endpoint will be exposed through a dedicated DNS Endpoint.dedicated_endpoint_dns. Your request to the dedicated DNS will be isolated from other users' traffic and will have better performance and reliability. Note: Once you enabled dedicated endpoint, you won't be able to send request to the shared DNS {region}-aiplatform.googleapis.com. The limitation will be removed soon.

Link copied to clipboard
val description: Output<String>? = null

The description of the Endpoint.

Link copied to clipboard
val displayName: Output<String>? = null

Required. The display name of the Endpoint. The name can be up to 128 characters long and can consist of any UTF-8 characters.

Link copied to clipboard

Customer-managed encryption key spec for an Endpoint. If set, this Endpoint and all sub-resources of this Endpoint will be secured by this key. Structure is documented below.

Link copied to clipboard
val labels: Output<Map<String, String>>? = null

The labels with user-defined metadata to organize your Endpoints. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field effective_labels for all of the labels present on the resource.

Link copied to clipboard
val location: Output<String>? = null

The location for the resource

Link copied to clipboard
val name: Output<String>? = null

The resource name of the Endpoint. The name must be numeric with no leading zeros and can be at most 10 digits.

Link copied to clipboard
val network: Output<String>? = null

The full name of the Google Compute Engine network to which the Endpoint should be peered. Private services access must already be configured for the network. If left unspecified, the Endpoint is not peered with any network. Only one of the fields, network or enable_private_service_connect, can be set. Format: projects/{project}/global/networks/{network}. Where {project} is a project number, as in 12345, and {network} is network name. Only one of the fields, network or privateServiceConnectConfig, can be set.

Link copied to clipboard

Configures the request-response logging for online prediction. Structure is documented below.

Link copied to clipboard

Configuration for private service connect. network and privateServiceConnectConfig are mutually exclusive. Structure is documented below.

Link copied to clipboard
val project: Output<String>? = null

The ID of the project in which the resource belongs. If it is not provided, the provider project is used.

Link copied to clipboard
val region: Output<String>? = null

The region for the resource

Link copied to clipboard
val trafficSplit: Output<String>? = null

A map from a DeployedModel's id to the percentage of this Endpoint's traffic that should be forwarded to that DeployedModel. If a DeployedModel's id is not listed in this map, then it receives no traffic. The traffic percentage values must add up to 100, or map must be empty if the Endpoint is to not accept any traffic at a moment. See the deployModel example and documentation for more information.

Functions

Link copied to clipboard
open override fun toJava(): AiEndpointArgs