Ai Feature Online Store Args
Vertex AI Feature Online Store provides a centralized repository for serving ML features and embedding indexes at low latency. The Feature Online Store is a top-level container. To get more information about FeatureOnlineStore, see:
How-to Guides
Example Usage
Vertex Ai Feature Online Store
import * as pulumi from "@pulumi/pulumi";
import * as gcp from "@pulumi/gcp";
const featureOnlineStore = new gcp.vertex.AiFeatureOnlineStore("feature_online_store", {
name: "example_feature_online_store",
labels: {
foo: "bar",
},
region: "us-central1",
bigtable: {
autoScaling: {
minNodeCount: 1,
maxNodeCount: 3,
cpuUtilizationTarget: 50,
},
},
});
import pulumi
import pulumi_gcp as gcp
feature_online_store = gcp.vertex.AiFeatureOnlineStore("feature_online_store",
name="example_feature_online_store",
labels={
"foo": "bar",
},
region="us-central1",
bigtable={
"auto_scaling": {
"min_node_count": 1,
"max_node_count": 3,
"cpu_utilization_target": 50,
},
})
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Gcp = Pulumi.Gcp;
return await Deployment.RunAsync(() =>
{
var featureOnlineStore = new Gcp.Vertex.AiFeatureOnlineStore("feature_online_store", new()
{
Name = "example_feature_online_store",
Labels =
{
{ "foo", "bar" },
},
Region = "us-central1",
Bigtable = new Gcp.Vertex.Inputs.AiFeatureOnlineStoreBigtableArgs
{
AutoScaling = new Gcp.Vertex.Inputs.AiFeatureOnlineStoreBigtableAutoScalingArgs
{
MinNodeCount = 1,
MaxNodeCount = 3,
CpuUtilizationTarget = 50,
},
},
});
});
package main
import (
"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/vertex"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := vertex.NewAiFeatureOnlineStore(ctx, "feature_online_store", &vertex.AiFeatureOnlineStoreArgs{
Name: pulumi.String("example_feature_online_store"),
Labels: pulumi.StringMap{
"foo": pulumi.String("bar"),
},
Region: pulumi.String("us-central1"),
Bigtable: &vertex.AiFeatureOnlineStoreBigtableArgs{
AutoScaling: &vertex.AiFeatureOnlineStoreBigtableAutoScalingArgs{
MinNodeCount: pulumi.Int(1),
MaxNodeCount: pulumi.Int(3),
CpuUtilizationTarget: pulumi.Int(50),
},
},
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.vertex.AiFeatureOnlineStore;
import com.pulumi.gcp.vertex.AiFeatureOnlineStoreArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureOnlineStoreBigtableArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureOnlineStoreBigtableAutoScalingArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var featureOnlineStore = new AiFeatureOnlineStore("featureOnlineStore", AiFeatureOnlineStoreArgs.builder()
.name("example_feature_online_store")
.labels(Map.of("foo", "bar"))
.region("us-central1")
.bigtable(AiFeatureOnlineStoreBigtableArgs.builder()
.autoScaling(AiFeatureOnlineStoreBigtableAutoScalingArgs.builder()
.minNodeCount(1)
.maxNodeCount(3)
.cpuUtilizationTarget(50)
.build())
.build())
.build());
}
}
resources:
featureOnlineStore:
type: gcp:vertex:AiFeatureOnlineStore
name: feature_online_store
properties:
name: example_feature_online_store
labels:
foo: bar
region: us-central1
bigtable:
autoScaling:
minNodeCount: 1
maxNodeCount: 3
cpuUtilizationTarget: 50
Vertex Ai Featureonlinestore With Optimized
import * as pulumi from "@pulumi/pulumi";
import * as gcp from "@pulumi/gcp";
const project = gcp.organizations.getProject({});
const featureonlinestore = new gcp.vertex.AiFeatureOnlineStore("featureonlinestore", {
name: "example_feature_online_store_optimized",
labels: {
foo: "bar",
},
region: "us-central1",
optimized: {},
dedicatedServingEndpoint: {
privateServiceConnectConfig: {
enablePrivateServiceConnect: true,
projectAllowlists: [project.then(project => project.number)],
},
},
});
import pulumi
import pulumi_gcp as gcp
project = gcp.organizations.get_project()
featureonlinestore = gcp.vertex.AiFeatureOnlineStore("featureonlinestore",
name="example_feature_online_store_optimized",
labels={
"foo": "bar",
},
region="us-central1",
optimized={},
dedicated_serving_endpoint={
"private_service_connect_config": {
"enable_private_service_connect": True,
"project_allowlists": [project.number],
},
})
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Gcp = Pulumi.Gcp;
return await Deployment.RunAsync(() =>
{
var project = Gcp.Organizations.GetProject.Invoke();
var featureonlinestore = new Gcp.Vertex.AiFeatureOnlineStore("featureonlinestore", new()
{
Name = "example_feature_online_store_optimized",
Labels =
{
{ "foo", "bar" },
},
Region = "us-central1",
Optimized = null,
DedicatedServingEndpoint = new Gcp.Vertex.Inputs.AiFeatureOnlineStoreDedicatedServingEndpointArgs
{
PrivateServiceConnectConfig = new Gcp.Vertex.Inputs.AiFeatureOnlineStoreDedicatedServingEndpointPrivateServiceConnectConfigArgs
{
EnablePrivateServiceConnect = true,
ProjectAllowlists = new[]
{
project.Apply(getProjectResult => getProjectResult.Number),
},
},
},
});
});
package main
import (
"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/organizations"
"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/vertex"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
project, err := organizations.LookupProject(ctx, &organizations.LookupProjectArgs{}, nil)
if err != nil {
return err
}
_, err = vertex.NewAiFeatureOnlineStore(ctx, "featureonlinestore", &vertex.AiFeatureOnlineStoreArgs{
Name: pulumi.String("example_feature_online_store_optimized"),
Labels: pulumi.StringMap{
"foo": pulumi.String("bar"),
},
Region: pulumi.String("us-central1"),
Optimized: &vertex.AiFeatureOnlineStoreOptimizedArgs{},
DedicatedServingEndpoint: &vertex.AiFeatureOnlineStoreDedicatedServingEndpointArgs{
PrivateServiceConnectConfig: &vertex.AiFeatureOnlineStoreDedicatedServingEndpointPrivateServiceConnectConfigArgs{
EnablePrivateServiceConnect: pulumi.Bool(true),
ProjectAllowlists: pulumi.StringArray{
pulumi.String(project.Number),
},
},
},
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.organizations.OrganizationsFunctions;
import com.pulumi.gcp.organizations.inputs.GetProjectArgs;
import com.pulumi.gcp.vertex.AiFeatureOnlineStore;
import com.pulumi.gcp.vertex.AiFeatureOnlineStoreArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureOnlineStoreOptimizedArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureOnlineStoreDedicatedServingEndpointArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureOnlineStoreDedicatedServingEndpointPrivateServiceConnectConfigArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
final var project = OrganizationsFunctions.getProject(GetProjectArgs.builder()
.build());
var featureonlinestore = new AiFeatureOnlineStore("featureonlinestore", AiFeatureOnlineStoreArgs.builder()
.name("example_feature_online_store_optimized")
.labels(Map.of("foo", "bar"))
.region("us-central1")
.optimized(AiFeatureOnlineStoreOptimizedArgs.builder()
.build())
.dedicatedServingEndpoint(AiFeatureOnlineStoreDedicatedServingEndpointArgs.builder()
.privateServiceConnectConfig(AiFeatureOnlineStoreDedicatedServingEndpointPrivateServiceConnectConfigArgs.builder()
.enablePrivateServiceConnect(true)
.projectAllowlists(project.number())
.build())
.build())
.build());
}
}
resources:
featureonlinestore:
type: gcp:vertex:AiFeatureOnlineStore
properties:
name: example_feature_online_store_optimized
labels:
foo: bar
region: us-central1
optimized: {}
dedicatedServingEndpoint:
privateServiceConnectConfig:
enablePrivateServiceConnect: true
projectAllowlists:
- ${project.number}
variables:
project:
fn::invoke:
function: gcp:organizations:getProject
arguments: {}
Vertex Ai Featureonlinestore With Beta Fields Bigtable
import * as pulumi from "@pulumi/pulumi";
import * as gcp from "@pulumi/gcp";
const featureonlinestore = new gcp.vertex.AiFeatureOnlineStore("featureonlinestore", {
name: "example_feature_online_store_beta_bigtable",
labels: {
foo: "bar",
},
region: "us-central1",
bigtable: {
autoScaling: {
minNodeCount: 1,
maxNodeCount: 2,
cpuUtilizationTarget: 80,
},
},
embeddingManagement: {
enabled: true,
},
forceDestroy: true,
});
const project = gcp.organizations.getProject({});
import pulumi
import pulumi_gcp as gcp
featureonlinestore = gcp.vertex.AiFeatureOnlineStore("featureonlinestore",
name="example_feature_online_store_beta_bigtable",
labels={
"foo": "bar",
},
region="us-central1",
bigtable={
"auto_scaling": {
"min_node_count": 1,
"max_node_count": 2,
"cpu_utilization_target": 80,
},
},
embedding_management={
"enabled": True,
},
force_destroy=True)
project = gcp.organizations.get_project()
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Gcp = Pulumi.Gcp;
return await Deployment.RunAsync(() =>
{
var featureonlinestore = new Gcp.Vertex.AiFeatureOnlineStore("featureonlinestore", new()
{
Name = "example_feature_online_store_beta_bigtable",
Labels =
{
{ "foo", "bar" },
},
Region = "us-central1",
Bigtable = new Gcp.Vertex.Inputs.AiFeatureOnlineStoreBigtableArgs
{
AutoScaling = new Gcp.Vertex.Inputs.AiFeatureOnlineStoreBigtableAutoScalingArgs
{
MinNodeCount = 1,
MaxNodeCount = 2,
CpuUtilizationTarget = 80,
},
},
EmbeddingManagement = new Gcp.Vertex.Inputs.AiFeatureOnlineStoreEmbeddingManagementArgs
{
Enabled = true,
},
ForceDestroy = true,
});
var project = Gcp.Organizations.GetProject.Invoke();
});
package main
import (
"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/organizations"
"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/vertex"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := vertex.NewAiFeatureOnlineStore(ctx, "featureonlinestore", &vertex.AiFeatureOnlineStoreArgs{
Name: pulumi.String("example_feature_online_store_beta_bigtable"),
Labels: pulumi.StringMap{
"foo": pulumi.String("bar"),
},
Region: pulumi.String("us-central1"),
Bigtable: &vertex.AiFeatureOnlineStoreBigtableArgs{
AutoScaling: &vertex.AiFeatureOnlineStoreBigtableAutoScalingArgs{
MinNodeCount: pulumi.Int(1),
MaxNodeCount: pulumi.Int(2),
CpuUtilizationTarget: pulumi.Int(80),
},
},
EmbeddingManagement: &vertex.AiFeatureOnlineStoreEmbeddingManagementArgs{
Enabled: pulumi.Bool(true),
},
ForceDestroy: pulumi.Bool(true),
})
if err != nil {
return err
}
_, err = organizations.LookupProject(ctx, &organizations.LookupProjectArgs{}, nil)
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.vertex.AiFeatureOnlineStore;
import com.pulumi.gcp.vertex.AiFeatureOnlineStoreArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureOnlineStoreBigtableArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureOnlineStoreBigtableAutoScalingArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureOnlineStoreEmbeddingManagementArgs;
import com.pulumi.gcp.organizations.OrganizationsFunctions;
import com.pulumi.gcp.organizations.inputs.GetProjectArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var featureonlinestore = new AiFeatureOnlineStore("featureonlinestore", AiFeatureOnlineStoreArgs.builder()
.name("example_feature_online_store_beta_bigtable")
.labels(Map.of("foo", "bar"))
.region("us-central1")
.bigtable(AiFeatureOnlineStoreBigtableArgs.builder()
.autoScaling(AiFeatureOnlineStoreBigtableAutoScalingArgs.builder()
.minNodeCount(1)
.maxNodeCount(2)
.cpuUtilizationTarget(80)
.build())
.build())
.embeddingManagement(AiFeatureOnlineStoreEmbeddingManagementArgs.builder()
.enabled(true)
.build())
.forceDestroy(true)
.build());
final var project = OrganizationsFunctions.getProject(GetProjectArgs.builder()
.build());
}
}
resources:
featureonlinestore:
type: gcp:vertex:AiFeatureOnlineStore
properties:
name: example_feature_online_store_beta_bigtable
labels:
foo: bar
region: us-central1
bigtable:
autoScaling:
minNodeCount: 1
maxNodeCount: 2
cpuUtilizationTarget: 80
embeddingManagement:
enabled: true
forceDestroy: true
variables:
project:
fn::invoke:
function: gcp:organizations:getProject
arguments: {}
Import
FeatureOnlineStore can be imported using any of these accepted formats:
projects/{{project}}/locations/{{region}}/featureOnlineStores/{{name}}
{{project}}/{{region}}/{{name}}
{{region}}/{{name}}
{{name}}
When using thepulumi import
command, FeatureOnlineStore can be imported using one of the formats above. For example:
$ pulumi import gcp:vertex/aiFeatureOnlineStore:AiFeatureOnlineStore default projects/{{project}}/locations/{{region}}/featureOnlineStores/{{name}}
$ pulumi import gcp:vertex/aiFeatureOnlineStore:AiFeatureOnlineStore default {{project}}/{{region}}/{{name}}
$ pulumi import gcp:vertex/aiFeatureOnlineStore:AiFeatureOnlineStore default {{region}}/{{name}}
$ pulumi import gcp:vertex/aiFeatureOnlineStore:AiFeatureOnlineStore default {{name}}
Constructors
Properties
Settings for Cloud Bigtable instance that will be created to serve featureValues for all FeatureViews under this FeatureOnlineStore. Structure is documented below.
The dedicated serving endpoint for this FeatureOnlineStore, which is different from common vertex service endpoint. Only need to be set when you choose Optimized storage type or enable EmbeddingManagement. Will use public endpoint by default. Structure is documented below.
The settings for embedding management in FeatureOnlineStore. Embedding management can only be set for BigTable. It is enabled by default for optimized storagetype. Structure is documented below.
If set to true, any FeatureViews and Features for this FeatureOnlineStore will also be deleted.
The labels with user-defined metadata to organize your feature online stores. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field effective_labels
for all of the labels present on the resource.
Settings for the Optimized store that will be created to serve featureValues for all FeatureViews under this FeatureOnlineStore