GooglePrivacyDlpV2KMapEstimationConfigArgs

data class GooglePrivacyDlpV2KMapEstimationConfigArgs(val auxiliaryTables: Output<List<GooglePrivacyDlpV2AuxiliaryTableArgs>>? = null, val quasiIds: Output<List<GooglePrivacyDlpV2TaggedFieldArgs>>, val regionCode: Output<String>? = null) : ConvertibleToJava<GooglePrivacyDlpV2KMapEstimationConfigArgs>

Reidentifiability metric. This corresponds to a risk model similar to what is called "journalist risk" in the literature, except the attack dataset is statistically modeled instead of being perfectly known. This can be done using publicly available data (like the US Census), or using a custom statistical model (indicated as one or several BigQuery tables), or by extrapolating from the distribution of values in the input dataset.

Constructors

fun GooglePrivacyDlpV2KMapEstimationConfigArgs(auxiliaryTables: Output<List<GooglePrivacyDlpV2AuxiliaryTableArgs>>? = null, quasiIds: Output<List<GooglePrivacyDlpV2TaggedFieldArgs>>, regionCode: Output<String>? = null)

Functions

Link copied to clipboard
open override fun toJava(): GooglePrivacyDlpV2KMapEstimationConfigArgs

Properties

Link copied to clipboard

Several auxiliary tables can be used in the analysis. Each custom_tag used to tag a quasi-identifiers column must appear in exactly one column of one auxiliary table.

Link copied to clipboard

Fields considered to be quasi-identifiers. No two columns can have the same tag.

Link copied to clipboard
val regionCode: Output<String>? = null

ISO 3166-1 alpha-2 region code to use in the statistical modeling. Set if no column is tagged with a region-specific InfoType (like US_ZIP_5) or a region code.