GoogleCloudMlV1__ParameterSpecArgs

data class GoogleCloudMlV1__ParameterSpecArgs(val categoricalValues: Output<List<String>>? = null, val discreteValues: Output<List<Double>>? = null, val maxValue: Output<Double>? = null, val minValue: Output<Double>? = null, val parameterName: Output<String>, val scaleType: Output<GoogleCloudMlV1__ParameterSpecScaleType>? = null, val type: Output<GoogleCloudMlV1__ParameterSpecType>) : ConvertibleToJava<GoogleCloudMlV1__ParameterSpecArgs>

Represents a single hyperparameter to optimize.

Constructors

Link copied to clipboard
fun GoogleCloudMlV1__ParameterSpecArgs(categoricalValues: Output<List<String>>? = null, discreteValues: Output<List<Double>>? = null, maxValue: Output<Double>? = null, minValue: Output<Double>? = null, parameterName: Output<String>, scaleType: Output<GoogleCloudMlV1__ParameterSpecScaleType>? = null, type: Output<GoogleCloudMlV1__ParameterSpecType>)

Functions

Link copied to clipboard
open override fun toJava(): GoogleCloudMlV1__ParameterSpecArgs

Properties

Link copied to clipboard
val categoricalValues: Output<List<String>>? = null

Required if type is CATEGORICAL. The list of possible categories.

Link copied to clipboard
val discreteValues: Output<List<Double>>? = null

Required if type is DISCRETE. A list of feasible points. The list should be in strictly increasing order. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.

Link copied to clipboard
val maxValue: Output<Double>? = null

Required if type is DOUBLE or INTEGER. This field should be unset if type is CATEGORICAL. This value should be integers if type is INTEGER.

Link copied to clipboard
val minValue: Output<Double>? = null

Required if type is DOUBLE or INTEGER. This field should be unset if type is CATEGORICAL. This value should be integers if type is INTEGER.

Link copied to clipboard
val parameterName: Output<String>

The parameter name must be unique amongst all ParameterConfigs in a HyperparameterSpec message. E.g., "learning_rate".

Link copied to clipboard

Optional. How the parameter should be scaled to the hypercube. Leave unset for categorical parameters. Some kind of scaling is strongly recommended for real or integral parameters (e.g., UNIT_LINEAR_SCALE).

Link copied to clipboard

The type of the parameter.