ExecutionTemplateArgs

data class ExecutionTemplateArgs(val acceleratorConfig: Output<SchedulerAcceleratorConfigArgs>? = null, val containerImageUri: Output<String>? = null, val dataprocParameters: Output<DataprocParametersArgs>? = null, val inputNotebookFile: Output<String>? = null, val jobType: Output<ExecutionTemplateJobType>? = null, val kernelSpec: Output<String>? = null, val labels: Output<Map<String, String>>? = null, val masterType: Output<String>? = null, val outputNotebookFolder: Output<String>? = null, val parameters: Output<String>? = null, val paramsYamlFile: Output<String>? = null, val scaleTier: Output<ExecutionTemplateScaleTier>, val serviceAccount: Output<String>? = null, val tensorboard: Output<String>? = null, val vertexAiParameters: Output<VertexAIParametersArgs>? = null) : ConvertibleToJava<ExecutionTemplateArgs>

The description a notebook execution workload.

Constructors

Link copied to clipboard
fun ExecutionTemplateArgs(acceleratorConfig: Output<SchedulerAcceleratorConfigArgs>? = null, containerImageUri: Output<String>? = null, dataprocParameters: Output<DataprocParametersArgs>? = null, inputNotebookFile: Output<String>? = null, jobType: Output<ExecutionTemplateJobType>? = null, kernelSpec: Output<String>? = null, labels: Output<Map<String, String>>? = null, masterType: Output<String>? = null, outputNotebookFolder: Output<String>? = null, parameters: Output<String>? = null, paramsYamlFile: Output<String>? = null, scaleTier: Output<ExecutionTemplateScaleTier>, serviceAccount: Output<String>? = null, tensorboard: Output<String>? = null, vertexAiParameters: Output<VertexAIParametersArgs>? = null)

Functions

Link copied to clipboard
open override fun toJava(): ExecutionTemplateArgs

Properties

Link copied to clipboard

Configuration (count and accelerator type) for hardware running notebook execution.

Link copied to clipboard
val containerImageUri: Output<String>? = null

Container Image URI to a DLVM Example: 'gcr.io/deeplearning-platform-release/base-cu100' More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container

Link copied to clipboard

Parameters used in Dataproc JobType executions.

Link copied to clipboard
val inputNotebookFile: Output<String>? = null

Path to the notebook file to execute. Must be in a Google Cloud Storage bucket. Format: gs://{bucket_name}/{folder}/{notebook_file_name} Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb

Link copied to clipboard
val jobType: Output<ExecutionTemplateJobType>? = null

The type of Job to be used on this execution.

Link copied to clipboard
val kernelSpec: Output<String>? = null

Name of the kernel spec to use. This must be specified if the kernel spec name on the execution target does not match the name in the input notebook file.

Link copied to clipboard
val labels: Output<Map<String, String>>? = null

Labels for execution. If execution is scheduled, a field included will be 'nbs-scheduled'. Otherwise, it is an immediate execution, and an included field will be 'nbs-immediate'. Use fields to efficiently index between various types of executions.

Link copied to clipboard
val masterType: Output<String>? = null

Specifies the type of virtual machine to use for your training job's master worker. You must specify this field when scaleTier is set to CUSTOM. You can use certain Compute Engine machine types directly in this field. The following types are supported: - n1-standard-4 - n1-standard-8 - n1-standard-16 - n1-standard-32 - n1-standard-64 - n1-standard-96 - n1-highmem-2 - n1-highmem-4 - n1-highmem-8 - n1-highmem-16 - n1-highmem-32 - n1-highmem-64 - n1-highmem-96 - n1-highcpu-16 - n1-highcpu-32 - n1-highcpu-64 - n1-highcpu-96 Alternatively, you can use the following legacy machine types: - standard - large_model - complex_model_s - complex_model_m - complex_model_l - standard_gpu - complex_model_m_gpu - complex_model_l_gpu - standard_p100 - complex_model_m_p100 - standard_v100 - large_model_v100 - complex_model_m_v100 - complex_model_l_v100 Finally, if you want to use a TPU for training, specify cloud_tpu in this field. Learn more about the special configuration options for training with TPU.

Link copied to clipboard
val outputNotebookFolder: Output<String>? = null

Path to the notebook folder to write to. Must be in a Google Cloud Storage bucket path. Format: gs://{bucket_name}/{folder} Ex: gs://notebook_user/scheduled_notebooks

Link copied to clipboard
val parameters: Output<String>? = null

Parameters used within the 'input_notebook_file' notebook.

Link copied to clipboard
val paramsYamlFile: Output<String>? = null

Parameters to be overridden in the notebook during execution. Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html on how to specifying parameters in the input notebook and pass them here in an YAML file. Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml

Link copied to clipboard

Scale tier of the hardware used for notebook execution. DEPRECATED Will be discontinued. As right now only CUSTOM is supported.

Link copied to clipboard
val serviceAccount: Output<String>? = null

The email address of a service account to use when running the execution. You must have the iam.serviceAccounts.actAs permission for the specified service account.

Link copied to clipboard
val tensorboard: Output<String>? = null

The name of a Vertex AI Tensorboard resource to which this execution will upload Tensorboard logs. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard}

Link copied to clipboard

Parameters used in Vertex AI JobType executions.