GoogleCloudDatalabelingV1beta1EvaluationJobConfigArgs

data class GoogleCloudDatalabelingV1beta1EvaluationJobConfigArgs(val bigqueryImportKeys: Output<Map<String, String>>, val boundingPolyConfig: Output<GoogleCloudDatalabelingV1beta1BoundingPolyConfigArgs>? = null, val evaluationConfig: Output<GoogleCloudDatalabelingV1beta1EvaluationConfigArgs>, val evaluationJobAlertConfig: Output<GoogleCloudDatalabelingV1beta1EvaluationJobAlertConfigArgs>? = null, val exampleCount: Output<Int>, val exampleSamplePercentage: Output<Double>, val humanAnnotationConfig: Output<GoogleCloudDatalabelingV1beta1HumanAnnotationConfigArgs>? = null, val imageClassificationConfig: Output<GoogleCloudDatalabelingV1beta1ImageClassificationConfigArgs>? = null, val inputConfig: Output<GoogleCloudDatalabelingV1beta1InputConfigArgs>? = null, val textClassificationConfig: Output<GoogleCloudDatalabelingV1beta1TextClassificationConfigArgs>? = null) : ConvertibleToJava<GoogleCloudDatalabelingV1beta1EvaluationJobConfigArgs>

Configures specific details of how a continuous evaluation job works. Provide this configuration when you create an EvaluationJob.

Constructors

constructor(bigqueryImportKeys: Output<Map<String, String>>, boundingPolyConfig: Output<GoogleCloudDatalabelingV1beta1BoundingPolyConfigArgs>? = null, evaluationConfig: Output<GoogleCloudDatalabelingV1beta1EvaluationConfigArgs>, evaluationJobAlertConfig: Output<GoogleCloudDatalabelingV1beta1EvaluationJobAlertConfigArgs>? = null, exampleCount: Output<Int>, exampleSamplePercentage: Output<Double>, humanAnnotationConfig: Output<GoogleCloudDatalabelingV1beta1HumanAnnotationConfigArgs>? = null, imageClassificationConfig: Output<GoogleCloudDatalabelingV1beta1ImageClassificationConfigArgs>? = null, inputConfig: Output<GoogleCloudDatalabelingV1beta1InputConfigArgs>? = null, textClassificationConfig: Output<GoogleCloudDatalabelingV1beta1TextClassificationConfigArgs>? = null)

Properties

Link copied to clipboard

Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * data_json_key: the data key for prediction input. You must provide either this key or reference_json_key. * reference_json_key: the data reference key for prediction input. You must provide either this key or data_json_key. * label_json_key: the label key for prediction output. Required. * label_score_json_key: the score key for prediction output. Required. * bounding_box_json_key: the bounding box key for prediction output. Required if your model version perform image object detection. Learn /ml-engine/docs/continuous-evaluation/create-job#prediction-keys.

Link copied to clipboard

Specify this field if your model version performs image object detection (bounding box detection). annotationSpecSet in this configuration must match EvaluationJob.annotationSpecSet.

Link copied to clipboard

Details for calculating evaluation metrics and creating Evaulations. If your model version performs image object detection, you must specify the boundingBoxEvaluationOptions field within this configuration. Otherwise, provide an empty object for this configuration.

Link copied to clipboard

Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.

Link copied to clipboard
val exampleCount: Output<Int>

The maximum number of predictions to sample and save to BigQuery during each evaluation interval. This limit overrides example_sample_percentage: even if the service has not sampled enough predictions to fulfill example_sample_perecentage during an interval, it stops sampling predictions when it meets this limit.

Link copied to clipboard

Fraction of predictions to sample and save to BigQuery during each evaluation interval. For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.

Link copied to clipboard

Optional. Details for human annotation of your data. If you set labelMissingGroundTruth to true for this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field. Note that you must create an Instruction resource before you can specify this field. Provide the name of the instruction resource in the instruction field within this configuration.

Link copied to clipboard

Specify this field if your model version performs image classification or general classification. annotationSpecSet in this configuration must match EvaluationJob.annotationSpecSet. allowMultiLabel in this configuration must match classificationMetadata.isMultiLabel in input_config.

Link copied to clipboard

Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields: * dataType must be one of IMAGE, TEXT, or GENERAL_DATA. * annotationType must be one of IMAGE_CLASSIFICATION_ANNOTATION, TEXT_CLASSIFICATION_ANNOTATION, GENERAL_CLASSIFICATION_ANNOTATION, or IMAGE_BOUNDING_BOX_ANNOTATION (image object detection). * If your machine learning model performs classification, you must specify classificationMetadata.isMultiLabel. * You must specify bigquerySource (not gcsSource).

Link copied to clipboard

Specify this field if your model version performs text classification. annotationSpecSet in this configuration must match EvaluationJob.annotationSpecSet. allowMultiLabel in this configuration must match classificationMetadata.isMultiLabel in input_config.

Functions

Link copied to clipboard
open override fun toJava(): GoogleCloudDatalabelingV1beta1EvaluationJobConfigArgs