Introduction to graph machine learning and graph neural networks
From graph theory to graph learning techniques
First iteration of the course delivered in Jan-Apr 2023
Lecture 1 - Introduction to Graph Machine Learning
Material: Slides
GitHub: Course Repository
Installation: Instructions for running the course notebooks
Lecture 2 - Introduction to Graph Science
Material: Slides
GitHub: Code
Lecture 3 - Graph Clustering
Material: Slides
GitHub: Code
Lecture 4 - Graph SVM
Material: Slides
GitHub: Code
Lecture 5 - Recommendation on Graphs
Material: Slides
GitHub: Code
Lecture 6 - Graph-based Visualization
Material: Slides
GitHub: Code
Introduction to deep learning
Lecture 7 - Attention Neural Networks
Material: Slides
GitHub: Course Repository
Lecture 8 - Diffusion Models
Material: Slides
GitHub: Course Repository
Introduction to machine learning
Lecture 3 - Vanilla kNN, k-d Tree, Decision Tree, Random Forest and Gradient Boosting
Material: Slides
Lecture 4 - Linear Models and Support Vector Machine
Material: Slides
Lecture 5 - Variance and Bias
Material: Slides
Lecture 6 - Regularization Techniques
Material: Slides