This dataset contains nine tissues (heart, hippocampus, hypothalamus, kidney, liver, prefrontal cortex, skeletal muscle, small intestine, and spleen) from C57BL/6J mice that were fed 2-deoxyglucose (6g/L) through their drinking water for 96hrs or 4wks. 96hr mice were given their 2DG treatment 2 weeks after the other cohort started the 4 week treatment. The organs from the mice were harvested and processed for metabolomics and transcriptomics. The data in this document pertains to the transcriptomics data only. The counts that were used were FPKM normalized before being log transformed. It was determined that sample A113 had low RNAseq quality and through further analyses with PCA, MA plots, and clustering was an outlier and will be removed for the rest of the analyses performed. This document will determine the contribution of each main effect or their combination to each module identified, as well as the relationship of each gene within the module and its significance.
needed.packages <- c("tidyverse", "here", "functional", "gplots", "dplyr", "GeneOverlap", "R.utils", "reshape2","magrittr","data.table", "RColorBrewer","preprocessCore", "ARTool","emmeans", "phia", "gProfileR", "WGCNA","plotly", "pheatmap","ppcor", "pander","downloadthis")
for(i in 1:length(needed.packages)){library(needed.packages[i], character.only = TRUE)}
source(here("source_files","WGCNA_source.R"))
source(here("source_files","WGCNA_contribution_source.R"))
tdata.FPKM.sample.info <- readRDS(here("Data","20190406_RNAseq_B6_4wk_2DG_counts_phenotypes.RData"))
tdata.FPKM <- readRDS(here("Data","20190406_RNAseq_B6_4wk_2DG_counts_numeric.RData"))
log.tdata.FPKM <- log(tdata.FPKM + 1)
log.tdata.FPKM <- as.data.frame(log.tdata.FPKM)
log.tdata.FPKM.sample.info <- cbind(log.tdata.FPKM, tdata.FPKM.sample.info[,27238:27240])
log.tdata.FPKM.sample.info <- log.tdata.FPKM.sample.info %>% rownames_to_column() %>% filter(rowname != "A113") %>% column_to_rownames()
log.tdata.FPKM.subset <- log.tdata.FPKM[,colMeans(log.tdata.FPKM != 0) > 0.5]
log.tdata.FPKM.subset <- log.tdata.FPKM.subset %>% rownames_to_column() %>% filter(rowname != "A113") %>% column_to_rownames()
log.tdata.FPKM.sample.info.subset.prefrontal.cortex <- log.tdata.FPKM.sample.info %>% rownames_to_column() %>% filter(Tissue == "Pre-frontal Cortex") %>% column_to_rownames()
log.tdata.FPKM.subset <- subset(log.tdata.FPKM.sample.info.subset.prefrontal.cortex, select = -c(Time,Treatment,Tissue))
WGCNA.pathway <-readRDS(here("Data","Prefrontal Cortex","Chang_B6_96hr_4wk_gprofiler_pathway_annotation_list_prefrontal_cortex_WGCNA.RData"))
Matched<-readRDS(here("Data","Prefrontal Cortex","Annotated_genes_in_prefrontal_cortex_WGCNA_Chang_B6_96hr_4wk.RData"))
module.names <- Matched$X..Module.
name <- str_split(module.names,"_")
samples <-c()
for(i in 1:length(name)){
samples[[i]] <- name[[i]][2]
}
name <- str_split(samples,"\"")
name <- unlist(name)
Treatment <- unclass(as.factor(log.tdata.FPKM.sample.info.subset.prefrontal.cortex[,27238]))
Time <- unclass(as.factor(log.tdata.FPKM.sample.info.subset.prefrontal.cortex[,27237]))
Treat.Time <- paste0(Treatment, Time)
phenotype <- data.frame(cbind(Treatment, Time, Treat.Time))
nSamples <- nrow(log.tdata.FPKM.sample.info.subset.prefrontal.cortex)
MEs0 <- read.csv(here("Data","Prefrontal Cortex","log.tdata.FPKM.sample.info.subset.prefrontal.cortex.WGCNA.module.eigens.csv"),header = T, row.names = 1)
name <- str_split(names(MEs0),"_")
samples <-c()
for(i in 1:length(name)){
samples[[i]] <- name[[i]][2]
}
name <- str_split(samples,"\"")
name <- unlist(name)
colnames(MEs0) <-name
MEs <- orderMEs(MEs0)
moduleTraitCor <- cor(MEs, phenotype, use = "p");
moduleTraitPvalue <- corPvalueStudent(moduleTraitCor, nSamples)
#sizeGrWindow(10,6)
# Will display correlations and their p-values
textMatrix = paste(signif(moduleTraitCor, 2), "\n(",
signif(moduleTraitPvalue, 1), ")", sep = "");
dim(textMatrix) = dim(moduleTraitCor)
# Display the correlation values within a heatmap plot
heat <- pheatmap(moduleTraitCor, main = paste("Module-trait relationships"), color=colorRampPalette(brewer.pal(n = 12, name = "Paired"))(10), cluster_rows = F, cluster_cols = F, fontsize_number = 4, angle_col = 45, number_color = "black", border_color = "white")
heat

DT::datatable(moduleTraitPvalue, extensions = 'Buttons',
rownames = TRUE,
filter="top",
options = list(dom = 'Blfrtip',
buttons = c('copy', 'csv', 'excel'),
lengthMenu = list(c(10,25,50,-1),
c(10,25,50,"All")),
scrollX= TRUE), class = "display")
phenotype$Treatment <- as.numeric(phenotype$Treatment)
phenotype$Time <- as.numeric(phenotype$Time)
phenotype$Treat.Time <- as.numeric(phenotype$Treat.Time)
Sigmodules <- as.data.frame(cbind(MEs$limegreen,MEs$rosybrown2, MEs$lavenderblush2,MEs$antiquewhite,MEs$pink,MEs$lightpink1,MEs$goldenrod3,MEs$aquamarine,MEs$mistyrose))
colnames(Sigmodules) <- c("limegreen","rosybrown2","lavenderblush2","antiquewhite","pink","lightpink1","goldenrod3","aquamarine","mistyrose")
for(i in 1:length(Sigmodules)){
cat("\n##",colnames(Sigmodules[i]),"{.tabset .tabset-fade .tabset-pills}","\n")
for(j in 1:length(phenotype)){
cat("\n###", colnames(phenotype[j]),"{.tabset .tabset-fade .tabset-pills}","\n")
for(k in 1:length(phenotype)){
cat("\n####", "Partial Correlation", colnames(phenotype[k]),"\n")
partial <- pcor.test(Sigmodules[,i], phenotype[,j],phenotype[,k])
panderOptions('knitr.auto.asis', FALSE)
print(pander(partial))
cat("\n \n")
}
cat("\n \n")
}
cat("\n \n")
}
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.4881 | 0.06493 | 2.016 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.505 | 0.05486 | 2.11 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.3424 | 0.2115 | 1.314 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.2942 | 0.2872 | -1.11 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.2567 | 0.3556 | -0.9578 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.3424 | 0.2115 | -1.314 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.2942 | 0.2872 | -1.11 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.505 | 0.05486 | 2.11 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.4601 | 0.08441 | 1.868 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.5122 | 0.05092 | 2.15 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.5517 | 0.03298 | 2.385 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.4775 | 0.07188 | 1.959 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.4327 | 0.1072 | -1.731 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.3716 | 0.1726 | -1.443 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.4775 | 0.07188 | -1.959 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.4327 | 0.1072 | -1.731 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.5517 | 0.03298 | 2.385 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.4727 | 0.07517 | 1.934 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.4508 | 0.09169 | 1.821 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.4529 | 0.09004 | 1.831 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.05596 | 0.843 | -0.2021 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.1065 | 0.7056 | 0.3862 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.09507 | 0.7361 | 0.3443 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.05596 | 0.843 | 0.2021 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.1065 | 0.7056 | 0.3862 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.4529 | 0.09004 | 1.831 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.458 | 0.08598 | 1.858 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.7385 | 0.001666 | -3.949 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.7386 | 0.001662 | -3.95 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.08269 | 0.7696 | -0.2992 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.02616 | 0.9263 | -0.09435 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.01764 | 0.9502 | -0.06361 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.08269 | 0.7696 | 0.2992 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.02616 | 0.9263 | -0.09435 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.7386 | 0.001662 | -3.95 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.7366 | 0.001738 | -3.926 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.8591 | 4.087e-05 | -6.052 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.9057 | 3.377e-06 | -7.703 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.7057 | 0.003286 | -3.591 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.6186 | 0.01395 | 2.839 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.3166 | 0.2502 | 1.204 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.7057 | 0.003286 | 3.591 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.6186 | 0.01395 | 2.839 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.9057 | 3.377e-06 | -7.703 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.8233 | 0.0001624 | -5.23 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.3816 | 0.1605 | -1.488 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.4564 | 0.08722 | -1.85 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.6176 | 0.01416 | -2.831 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.5937 | 0.01962 | 2.66 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.5488 | 0.03412 | 2.367 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.6176 | 0.01416 | 2.831 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.5937 | 0.01962 | 2.66 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.4564 | 0.08722 | -1.85 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.3251 | 0.2371 | -1.239 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.08907 | 0.7523 | 0.3224 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.1018 | 0.7181 | 0.369 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.4776 | 0.07181 | -1.96 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.4863 | 0.06606 | 2.007 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.4843 | 0.06731 | 1.996 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.4776 | 0.07181 | 1.96 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.4863 | 0.06606 | 2.007 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.1018 | 0.7181 | 0.369 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.1368 | 0.6268 | 0.498 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.443 | 0.09817 | -1.782 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.4934 | 0.06162 | -2.045 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.5254 | 0.0443 | -2.226 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.4911 | 0.06301 | 2.033 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.4403 | 0.1005 | 1.768 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.5254 | 0.0443 | 2.226 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.4911 | 0.06301 | 2.033 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.4934 | 0.06162 | -2.045 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.397 | 0.1429 | -1.56 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.3937 | 0.1465 | 1.544 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.4098 | 0.1293 | 1.62 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| -0.2604 | 0.3486 | -0.9725 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.3013 | 0.2751 | 1.139 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.277 | 0.3176 | 1.039 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.2604 | 0.3486 | 0.9725 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.3013 | 0.2751 | 1.139 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.4098 | 0.1293 | 1.62 | 16 | 1 | pearson |
NULL
| estimate | p.value | statistic | n | gp | Method |
|---|---|---|---|---|---|
| 0.4193 | 0.1197 | 1.665 | 16 | 1 | pearson |
NULL
time.contribution(phenotype, log.tdata.FPKM.subset, MEs)
treat.contribution(phenotype, log.tdata.FPKM.subset, MEs)
treat.time.contribution(phenotype, log.tdata.FPKM.subset, MEs)
Analysis performed by Ann Wells
The Carter Lab The Jackson Laboratory 2023
ann.wells@jax.org