Introduction and Data files

This dataset contains nine tissues (heart, hippocampus, hypothalamus, kidney, liver, prefrontal cortex, skeletal muscle, small intestine, and spleen) from C57BL/6J mice that were fed 2-deoxyglucose (6g/L) through their drinking water for 96hrs or 4wks. 96hr mice were given their 2DG treatment 2 weeks after the other cohort started the 4 week treatment. The organs from the mice were harvested and processed for metabolomics and transcriptomics. The data in this document pertains to the transcriptomics data only. The counts that were used were FPKM normalized before being log transformed. It was determined that sample A113 had low RNAseq quality and through further analyses with PCA, MA plots, and clustering was an outlier and will be removed for the rest of the analyses performed. This document will determine the overall summary expression of each module across the main effects, as well as, assess the significance of each main effect and their interaction, using ANOVA, for each module and assess potential interactions visually for each module.

needed.packages <- c("tidyverse", "here", "functional", "gplots", "dplyr", "GeneOverlap", "R.utils", "reshape2","magrittr","data.table", "RColorBrewer","preprocessCore", "ARTool","emmeans", "phia", "gProfileR", "WGCNA","plotly", "pheatmap","pander", "kableExtra")
for(i in 1:length(needed.packages)){library(needed.packages[i], character.only = TRUE)}

source(here("source_files","WGCNA_source.R"))
source(here("source_files","plot_theme.R"))
tdata.FPKM.sample.info <- readRDS(here("Data","20190406_RNAseq_B6_4wk_2DG_counts_phenotypes.RData"))

tdata.FPKM <- readRDS(here("Data","20190406_RNAseq_B6_4wk_2DG_counts_numeric.RData"))

log.tdata.FPKM <- log(tdata.FPKM + 1)
log.tdata.FPKM <- as.data.frame(log.tdata.FPKM)

log.tdata.FPKM.sample.info <- cbind(log.tdata.FPKM, tdata.FPKM.sample.info[,27238:27240])

log.tdata.FPKM.sample.info <- log.tdata.FPKM.sample.info %>% rownames_to_column() %>% filter(rowname != "A113") %>% column_to_rownames()

log.tdata.FPKM.subset <- log.tdata.FPKM[,colMeans(log.tdata.FPKM != 0) > 0.5] 

log.tdata.FPKM.sample.info.subset <- cbind(log.tdata.FPKM.subset,tdata.FPKM.sample.info[,27238:27240])
log.tdata.FPKM.sample.info.subset <- log.tdata.FPKM.sample.info.subset %>% rownames_to_column() %>% filter(rowname != "A113") %>% column_to_rownames()

log.tdata.FPKM.sample.info.subset.liver <- log.tdata.FPKM.sample.info.subset %>% rownames_to_column() %>% filter(Tissue == "Liver") %>% column_to_rownames()

log.tdata.FPKM.sample.info.subset.liver$Treatment[log.tdata.FPKM.sample.info.subset.liver$Treatment=="None"] <- "Control"

log.tdata.FPKM.sample.info.subset.liver <- cbind(log.tdata.FPKM.sample.info.subset.liver, Time.Treatment = paste(log.tdata.FPKM.sample.info.subset.liver$Time, log.tdata.FPKM.sample.info.subset.liver$Treatment))

module.labels <- readRDS(here("Data","Liver","log.tdata.FPKM.sample.info.subset.liver.WGCNA.module.labels.RData"))
module.eigens <- readRDS(here("Data","Liver","log.tdata.FPKM.sample.info.subset.liver.WGCNA.module.eigens.RData"))
modules <- readRDS(here("Data","Liver","log.tdata.FPKM.sample.info.subset.liver.WGCNA.module.membership.RData"))
net.deg <- readRDS(here("Data","Liver","Chang_2DG_BL6_connectivity_liver.RData"))
ensembl.location <- readRDS(here("Data","Ensembl_gene_id_and_location.RData"))

Eigengene Stratification

Eigengene were stratified by time and treatment. The heatmap is a matrix of the average eigengene value for each level of the trait.

factors <- c("Time","Treatment","Time.Treatment")
eigenmetabolite(factors,log.tdata.FPKM.sample.info.subset.liver)

Time

Treatment

Time.Treatment

ANOVA

An ANOVA using aligned rank transformation was performed for each module. The full model is y ~ time + treatment + time:treatment.

# Three-Way ANOVA for each Eigenmetabolite
model.data = dplyr::bind_cols(module.eigens[rownames(log.tdata.FPKM.sample.info.subset.liver),], log.tdata.FPKM.sample.info.subset.liver[,c("Time","Treatment")])
model.data$Time <- as.factor(model.data$Time)
model.data$Treatment <- as.factor(model.data$Treatment)

final.anova <- list()
for (m in colnames(module.eigens)) {
  a <- art(data = model.data, model.data[,m] ~ Time*Treatment)
  model <- anova(a)
  adjust <- p.adjust(model$`Pr(>F)`, method = "BH")
  
  final.anova[[m]] <- cbind(model, adjust)
}

Turquoise Module

DT.table(final.anova[[1]])

Darkgrey Module

DT.table(final.anova[[2]])

Grey60 Module

DT.table(final.anova[[3]])

Brown Module

DT.table(final.anova[[4]])

Salmon Module

DT.table(final.anova[[5]])

Cyan Module

DT.table(final.anova[[6]])

Green Module

DT.table(final.anova[[7]])

Black Module

DT.table(final.anova[[8]])

Pink Module

DT.table(final.anova[[9]])

Darkolivegreen Module

DT.table(final.anova[[10]])

Tan Module

DT.table(final.anova[[11]])

Lightcyan Module

DT.table(final.anova[[12]])

Plum2 Module

DT.table(final.anova[[13]])

Lightgreen Module

DT.table(final.anova[[14]])

Darkorange Module

DT.table(final.anova[[15]])

Darkred Module

DT.table(final.anova[[16]])

Darkgreen Module

DT.table(final.anova[[17]])

Darkturquoise Module

DT.table(final.anova[[18]])

Orange Module

DT.table(final.anova[[19]])

Skyblue Module

DT.table(final.anova[[20]])

Violet Module

DT.table(final.anova[[21]])

Yellowgreen Module

DT.table(final.anova[[22]])

Skyblue3 Module

DT.table(final.anova[[23]])

Mediumpurple3 Module

DT.table(final.anova[[24]])

Lightsteelblue1 Module

DT.table(final.anova[[25]])

Lightcyan1 Module

DT.table(final.anova[[26]])

Darkorange2 Module

DT.table(final.anova[[27]])

Ivory Module

DT.table(final.anova[[28]])

Brown4 Module

DT.table(final.anova[[29]])

Bisque4 Module

DT.table(final.anova[[30]])

Darkslateblue Module

DT.table(final.anova[[31]])

Interaction plots

Interaction plots were created to identify which modules have a potential interaction between time and treatment. A potential interaction is identified when the two lines cross.

for (m in module.labels) {
  p = plot.interaction(model.data, "Time", "Treatment", resp = m)
  name <- sapply(str_split(m,"_"),"[",2)
  cat("\n###",name,"\n")
  print(p)
  cat("\n \n")
}

turquoise

darkgrey

grey60

brown

salmon

cyan

green

black

pink

darkolivegreen

tan

lightcyan

plum2

lightgreen

darkorange

darkred

darkgreen

darkturquoise

orange

skyblue

violet

yellowgreen

skyblue3

mediumpurple3

lightsteelblue1

lightcyan1

darkorange2

ivory

brown4

bisque4

darkslateblue


Analysis performed by Ann Wells

The Carter Lab The Jackson Laboratory 2023

ann.wells@jax.org